Open-Source LLM-Driven Federated Transformer for Predictive IoV Management
- URL: http://arxiv.org/abs/2505.00651v1
- Date: Thu, 01 May 2025 16:54:21 GMT
- Title: Open-Source LLM-Driven Federated Transformer for Predictive IoV Management
- Authors: Yazan Otoum, Arghavan Asad, Ishtiaq Ahmad,
- Abstract summary: Federated Prompt-d Traffic Transformer (FPoTT) is a novel framework that leverages open-source Large Language Models for predictive IoV management.<n>FPoTT introduces a dynamic prompt optimization mechanism that iteratively refines textual prompts to enhance trajectory prediction.<n>The architecture employs a dual-layer federated learning paradigm, combining lightweight edge models for real-time inference with cloud-based LLMs to retain global intelligence.
- Score: 1.8024397171920885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of connected vehicles within the Internet of Vehicles (IoV) ecosystem presents critical challenges in ensuring scalable, real-time, and privacy-preserving traffic management. Existing centralized IoV solutions often suffer from high latency, limited scalability, and reliance on proprietary Artificial Intelligence (AI) models, creating significant barriers to widespread deployment, particularly in dynamic and privacy-sensitive environments. Meanwhile, integrating Large Language Models (LLMs) in vehicular systems remains underexplored, especially concerning prompt optimization and effective utilization in federated contexts. To address these challenges, we propose the Federated Prompt-Optimized Traffic Transformer (FPoTT), a novel framework that leverages open-source LLMs for predictive IoV management. FPoTT introduces a dynamic prompt optimization mechanism that iteratively refines textual prompts to enhance trajectory prediction. The architecture employs a dual-layer federated learning paradigm, combining lightweight edge models for real-time inference with cloud-based LLMs to retain global intelligence. A Transformer-driven synthetic data generator is incorporated to augment training with diverse, high-fidelity traffic scenarios in the Next Generation Simulation (NGSIM) format. Extensive evaluations demonstrate that FPoTT, utilizing EleutherAI Pythia-1B, achieves 99.86% prediction accuracy on real-world data while maintaining high performance on synthetic datasets. These results underscore the potential of open-source LLMs in enabling secure, adaptive, and scalable IoV management, offering a promising alternative to proprietary solutions in smart mobility ecosystems.
Related papers
- LLMs meet Federated Learning for Scalable and Secure IoT Management [6.649910168731417]
Traditional centralized architectures struggle with latency, privacy concerns, and excessive resource consumption.<n>This paper presents a novel Federated Learning-driven Large Language Model (FL-LLM) framework, designed to enhance IoT system intelligence.
arXiv Detail & Related papers (2025-04-22T16:56:59Z) - Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning [39.73152182572741]
This paper proposes a novel framework, named Quantized Split Federated Fine-Tuning Large AI Model (SFLAM)<n>By partitioning the training load between edge devices and servers, SFLAM can facilitate the operation of large models on devices.<n>SFLAM incorporates quantization management, power control, and bandwidth allocation strategies to enhance training efficiency.
arXiv Detail & Related papers (2025-04-12T07:55:11Z) - Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap [51.198001060683296]
Large Language Models (LLMs) offer transformative potential to address transportation challenges.
This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation.
For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization.
arXiv Detail & Related papers (2025-03-27T11:56:27Z) - Smooth Handovers via Smoothed Online Learning [48.953313950521746]
We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs.<n>Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices.<n>We propose a realistic system model for smooth and accurate HOs that extends existing approaches by incorporating device and cell features on HO optimization.
arXiv Detail & Related papers (2025-01-14T13:16:33Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.