論文の概要: Efficient neural speech synthesis for low-resource languages through
multilingual modeling
- arxiv url: http://arxiv.org/abs/2008.09659v1
- Date: Thu, 20 Aug 2020 14:05:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 03:59:01.958295
- Title: Efficient neural speech synthesis for low-resource languages through
multilingual modeling
- Title(参考訳): 多言語モデリングによる低リソース言語のための効率的なニューラル音声合成
- Authors: Marcel de Korte, Jaebok Kim, Esther Klabbers
- Abstract要約: マルチスピーカーモデリングは、新しい音声に必要なデータ要求を減らすことができる。
多言語モデルは、単言語多話者モデルに匹敵する自然度で音声を生成することができることを示す。
- 参考スコア(独自算出の注目度): 3.996275177789896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neural TTS have led to models that can produce
high-quality synthetic speech. However, these models typically require large
amounts of training data, which can make it costly to produce a new voice with
the desired quality. Although multi-speaker modeling can reduce the data
requirements necessary for a new voice, this approach is usually not viable for
many low-resource languages for which abundant multi-speaker data is not
available. In this paper, we therefore investigated to what extent multilingual
multi-speaker modeling can be an alternative to monolingual multi-speaker
modeling, and explored how data from foreign languages may best be combined
with low-resource language data. We found that multilingual modeling can
increase the naturalness of low-resource language speech, showed that
multilingual models can produce speech with a naturalness comparable to
monolingual multi-speaker models, and saw that the target language naturalness
was affected by the strategy used to add foreign language data.
- Abstract(参考訳): ニューラルTSの最近の進歩は、高品質な合成音声を生成するモデルを生み出している。
しかし、これらのモデルは通常、大量のトレーニングデータを必要とするため、望ましい品質で新しい音声を生成するのにコストがかかる。
マルチ話者モデリングは、新しい音声に必要なデータ要求を減らすことができるが、この手法は通常、豊富なマルチ話者データが利用できない多くの低リソース言語では有効ではない。
そこで本稿では,多言語多話者モデリングが単言語多話者モデリングの代替となる可能性について検討し,外国語のデータと低リソース言語データとの結合がいかに優れているかを検討した。
その結果,多言語モデルが低資源言語音声の自然性を高めること,多言語モデルが単言語多話者モデルに匹敵する自然性を持つ音声を生成できること,対象言語自然性が外国語データ付加戦略の影響を受けていることがわかった。
関連論文リスト
- A multilingual training strategy for low resource Text to Speech [5.109810774427171]
ソーシャルメディアからのデータを、小さなTSデータセット構築に利用することができるか、また、言語間移動学習がこの種のデータに有効かどうかを検討する。
そこで本稿では,対象とする低リソース言語に対するTSモデルをトレーニングするために,外国語からのデータをどのように選択し,プールするかを検討する。
以上の結果から,多言語事前学習は単言語事前学習よりも,生成した音声の明瞭さと自然性を高めることが示唆された。
論文 参考訳(メタデータ) (2024-09-02T12:53:01Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
自動音声認識(ASR)と音声翻訳(ST)はどちらもモデル構造としてニューラルトランスデューサを使用することができる。
ニューラルトランスデューサを用いた多言語音声認識および翻訳モデルであるLAMASSUを提案する。
論文 参考訳(メタデータ) (2022-11-05T04:03:55Z) - A Survey of Multilingual Models for Automatic Speech Recognition [6.657361001202456]
言語間移動は多言語自動音声認識の課題に対する魅力的な解法である。
自己監督学習の最近の進歩は、多言語ASRモデルで使用されるラベルなし音声データへの道を開いた。
多様な言語や技術の研究から多言語モデルを構築するためのベストプラクティスを提示する。
論文 参考訳(メタデータ) (2022-02-25T09:31:40Z) - Cross-lingual Transfer for Speech Processing using Acoustic Language
Similarity [81.51206991542242]
言語間の移動は、このデジタル分割を橋渡しする魅力的な方法を提供する。
現在の言語間アルゴリズムは、テキストベースのタスクや音声関連タスクを低リソース言語で実現している。
本稿では,数百の言語をまたがる音響的言語間移動対を効率的に同定する言語類似性手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T01:55:17Z) - xGQA: Cross-Lingual Visual Question Answering [100.35229218735938]
xGQAは視覚的質問応答タスクのための新しい多言語評価ベンチマークである。
確立された英語GQAデータセットを7言語に拡張する。
本稿では,マルチモーダルトランスフォーマーモデルに適応するアダプタベースの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-13T15:58:21Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models [1.52292571922932]
自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
これらの多言語モデルが,言語固有のテストデータにまたがる単言語モデルと比較して,同等あるいは優れた性能に到達できることを示す。
論文 参考訳(メタデータ) (2020-12-07T17:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。