Conversational Complexity for Assessing Risk in Large Language Models
- URL: http://arxiv.org/abs/2409.01247v3
- Date: Fri, 29 Nov 2024 01:47:20 GMT
- Title: Conversational Complexity for Assessing Risk in Large Language Models
- Authors: John Burden, Manuel Cebrian, Jose Hernandez-Orallo,
- Abstract summary: Large Language Models (LLMs) enable beneficial applications while harboring potential for harm.<n>A watershed case in 2023 involved journalist Kevin Roose's extended dialogue with Bing, an LLM-powered search engine.<n>This raises the question: How much conversational effort is needed to elicit harmful information from LLMs?<n>We propose two measures to quantify this effort: Conversational Length (CL) and Conversational Complexity (CC)
- Score: 8.552688712751232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) present a dual-use dilemma: they enable beneficial applications while harboring potential for harm, particularly through conversational interactions. Despite various safeguards, advanced LLMs remain vulnerable. A watershed case in early 2023 involved journalist Kevin Roose's extended dialogue with Bing, an LLM-powered search engine, which revealed harmful outputs after probing questions, highlighting vulnerabilities in the model's safeguards. This contrasts with simpler early jailbreaks, like the "Grandma Jailbreak," where users framed requests as innocent help for a grandmother, easily eliciting similar content. This raises the question: How much conversational effort is needed to elicit harmful information from LLMs? We propose two measures to quantify this effort: Conversational Length (CL), which measures the number of conversational turns needed to obtain a specific harmful response, and Conversational Complexity (CC), defined as the Kolmogorov complexity of the user's instruction sequence leading to the harmful response. To address the incomputability of Kolmogorov complexity, we approximate CC using a reference LLM to estimate the compressibility of the user instructions. Applying this approach to a large red-teaming dataset, we perform a quantitative analysis examining the statistical distribution of harmful and harmless conversational lengths and complexities. Our empirical findings suggest that this distributional analysis and the minimization of CC serve as valuable tools for understanding AI safety, offering insights into the accessibility of harmful information. This work establishes a foundation for a new perspective on LLM safety, centered around the algorithmic complexity of pathways to harm.
Related papers
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.
It reformulates harmful queries into benign reasoning tasks.
We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective [5.769786334333616]
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) based applications including automated text generation, question answering, and others.
They face a significant challenge: hallucinations, where models produce plausible-sounding but factually incorrect responses.
This paper discusses these open challenges covering state-of-the-art datasets and benchmarks as well as methods for knowledge integration and evaluating hallucinations.
arXiv Detail & Related papers (2024-11-21T16:09:05Z) - Understanding the Interplay between Parametric and Contextual Knowledge for Large Language Models [85.13298925375692]
Large language models (LLMs) encode vast amounts of knowledge during pre-training.
LLMs can be enhanced by incorporating contextual knowledge (CK)
Can LLMs effectively integrate their internal PK with external CK to solve complex problems?
arXiv Detail & Related papers (2024-10-10T23:09:08Z) - HiddenGuard: Fine-Grained Safe Generation with Specialized Representation Router [42.222681564769076]
We introduce HiddenGuard, a novel framework for fine-grained, safe generation in Large Language Models.
HiddenGuard incorporates Prism, which operates alongside the LLM to enable real-time, token-level detection and redaction of harmful content.
Our experiments demonstrate that HiddenGuard achieves over 90% in F1 score for detecting and redacting harmful content.
arXiv Detail & Related papers (2024-10-03T17:10:41Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks.
We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities.
We evaluate multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama.
arXiv Detail & Related papers (2024-04-19T20:11:12Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
arXiv Detail & Related papers (2024-04-09T14:40:08Z) - Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks [55.603893267803265]
Large Language Models (LLMs) are susceptible to Jailbreaking attacks.
Jailbreaking attacks aim to extract harmful information by subtly modifying the attack query.
We focus on a new attack form, called Contextual Interaction Attack.
arXiv Detail & Related papers (2024-02-14T13:45:19Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
We identify whether responses are attributed to generated or retrieved contexts.
Experiments reveal a significant bias in several LLMs to favor generated contexts, even when they provide incorrect information.
arXiv Detail & Related papers (2024-01-22T12:54:04Z) - Causality Analysis for Evaluating the Security of Large Language Models [9.102606258312246]
Large Language Models (LLMs) are increasingly adopted in many safety-critical applications.
Recent studies have shown that LLMs are still subject to attacks such as adversarial perturbation and Trojan attacks.
We propose a framework for conducting light-weight causality-analysis of LLMs at the token, layer, and neuron level.
arXiv Detail & Related papers (2023-12-13T03:35:43Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z) - Red-Teaming Large Language Models using Chain of Utterances for
Safety-Alignment [32.2246459413988]
We propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming.
We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting.
We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts.
arXiv Detail & Related papers (2023-08-18T16:27:04Z) - How to Enhance Causal Discrimination of Utterances: A Case on Affective
Reasoning [22.11437627661179]
We propose the incorporation of textiti.i.i.d. noise terms into the conversation process, thereby constructing a structural causal model (SCM)
To facilitate the implementation of deep learning, we introduce the cogn frameworks to handle unstructured conversation data, and employ an autoencoder architecture to regard the unobservable noise as learnable "implicit causes"
arXiv Detail & Related papers (2023-05-04T07:45:49Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.