Extracting Signal out of Chaos: Advancements on MAGI for Bayesian Analysis of Dynamical Systems
- URL: http://arxiv.org/abs/2409.01293v1
- Date: Tue, 20 Aug 2024 15:47:06 GMT
- Title: Extracting Signal out of Chaos: Advancements on MAGI for Bayesian Analysis of Dynamical Systems
- Authors: Skyler Wu,
- Abstract summary: We introduce Pilot MAGI, a novel methodological upgrade on the base MAGI method.
We show how one can combine MAGI-based methods with dynamical systems theory to provide probabilistic classifications of whether a system is stable or chaotic.
We show that PMSP can output accurate future predictions even on chaotic dynamical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work builds off the manifold-constrained Gaussian process inference (MAGI) method for Bayesian parameter inference and trajectory reconstruction of ODE-based dynamical systems, focusing primarily on sparse and noisy data conditions. First, we introduce Pilot MAGI (pMAGI), a novel methodological upgrade on the base MAGI method that confers significantly-improved numerical stability, parameter inference, and trajectory reconstruction. Second, we demonstrate, for the first time to our knowledge, how one can combine MAGI-based methods with dynamical systems theory to provide probabilistic classifications of whether a system is stable or chaotic. Third, we demonstrate how pMAGI performs favorably in many settings against much more computationally-expensive and overparameterized methods. Fourth, we introduce Pilot MAGI Sequential Prediction (PMSP), a novel method building upon pMAGI that allows one to predict the trajectory of ODE-based dynamical systems multiple time steps into the future, given only sparse and noisy observations. We show that PMSP can output accurate future predictions even on chaotic dynamical systems and significantly outperform PINN-based methods. Overall, we contribute to the literature two novel methods, pMAGI and PMSP, that serve as Bayesian, uncertainty-quantified competitors to the Physics-Informed Neural Network.
Related papers
- Zero-point energy of tensor fluctuations on the MPS manifold [0.05524804393257919]
This work presents a method for studying low-energy physics in highly correlated magnetic systems using the matrix product state (MPS) manifold.
We adapt the spin-wave approach, which has been very successful in modeling certain low-entanglement magnetic materials, to systems where the ground state is better represented by an MPS.
arXiv Detail & Related papers (2024-10-29T18:00:02Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
arXiv Detail & Related papers (2024-07-31T13:37:04Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Sampling-Free Probabilistic Deep State-Space Models [28.221200872943825]
A Probabilistic Deep SSM generalizes to dynamical systems of unknown parametric form.
We propose the first deterministic inference algorithm for models of this type.
arXiv Detail & Related papers (2023-09-15T09:06:23Z) - An information field theory approach to Bayesian state and parameter estimation in dynamical systems [0.0]
This paper develops a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems.
We construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely.
arXiv Detail & Related papers (2023-06-03T16:36:43Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.