Microcanonical Free Cumulants in lattice systems
- URL: http://arxiv.org/abs/2409.01404v1
- Date: Mon, 2 Sep 2024 18:00:04 GMT
- Title: Microcanonical Free Cumulants in lattice systems
- Authors: Felix Fritzsch, Tomaž Prosen, Silvia Pappalardi,
- Abstract summary: We discuss the Free Cumulants approach to many-body dynamics within the microcanonical ensemble.
We numerically demonstrate the validity of our approach in a non-integrable spin chain Hamiltonian for extensive observables at finite energy density.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the full version of the Eigenstate Thermalization Hypothesis (ETH) has been systematized using Free Probability. In this paper, we present a detailed discussion of the Free Cumulants approach to many-body dynamics within the microcanonical ensemble. Differences between the later and canonical averages are known to manifest in the time-dependent fluctuations of extensive operators. Thus, the microcanonical ensemble is essential to extend the application of Free Probability to the broad class of extensive observables. We numerically demonstrate the validity of our approach in a non-integrable spin chain Hamiltonian for extensive observables at finite energy density. Our results confirm the full ETH properties, specifically the suppression of crossing contributions and the factorization of non-crossing ones, thus demonstrating that the microcanonical free cumulants encode ETH smooth correlations for both local and extensive observables.
Related papers
- Entanglement and private information in many-body thermal states [0.0]
We show how entanglement in many-body mixed states is reflected in correlation functions.
We ask whether entanglement in the system can be used as a resource for distilling private keys.
arXiv Detail & Related papers (2025-02-18T19:00:10Z) - Unified analysis of non-Markovian open quantum systems in Gaussian environment using superoperator formalism [4.504072151606679]
We present perturbative error bounds for the non-Markovian dynamics of observables in open quantum systems.
This extends the work of [Mascherpa et al., Phys. Rev. Lett. 118, 100401, 2017], which demonstrated qualitatively tighter bounds over the standard Gr"onwall-type analysis.
arXiv Detail & Related papers (2024-11-13T16:19:32Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Quantum chaos, integrability, and late times in the Krylov basis [0.8287206589886881]
Quantum chaotic systems are conjectured to display a spectrum whose fine-grained features are well described by Random Matrix Theory (RMT)
We show that for Haar-random initial states in RMTs the mean and covariance of the Lanczos spectrum suffices to produce the full long time behavior of general survival probabilities.
This analysis suggests a notion of eigenstate complexity, the statistics of which differentiate integrable systems and classes of quantum chaos.
arXiv Detail & Related papers (2023-12-06T19:02:22Z) - Floquet systems with continuous dynamical symmetries: characterization, time-dependent Noether charge, and solvability [0.0]
We study quantum Floquet systems having continuous dynamical symmetry (CDS)
Unlike the discrete ones, the CDS strongly constrains the possible Hamiltonians $H(t)$ and allows us to obtain all the Floquet states.
Our results provide a systematic way of solving for Floquet states and explain how they avoid hybridization in quasienergy diagrams.
arXiv Detail & Related papers (2023-08-04T05:42:42Z) - Exact Entanglement in the Driven Quantum Symmetric Simple Exclusion
Process [0.0]
Entanglement properties of driven quantum systems can potentially differ from the equilibrium situation due to long range coherences.
We derive exact formulae for its mutual information between different subsystems in the steady state and show that it satisfies a volume law.
Surprisingly, the QSSEP entanglement properties only depend on data related to its transport properties and we suspect that such a relation might hold for more general mesoscopic systems.
arXiv Detail & Related papers (2023-04-21T14:37:14Z) - Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a
Quantum Quench in a Driven-Dissipative Kitaev Chain [0.0]
We show that relaxation of driven-dissipative systems after a quantum quench can be determined by a maximum entropy ensemble.
We show that these results apply to broad classes of noninteracting fermionic models.
arXiv Detail & Related papers (2022-03-28T08:59:58Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.