Quantum chaos, integrability, and late times in the Krylov basis
- URL: http://arxiv.org/abs/2312.03848v1
- Date: Wed, 6 Dec 2023 19:02:22 GMT
- Title: Quantum chaos, integrability, and late times in the Krylov basis
- Authors: Vijay Balasubramanian, Javier M. Magan, Qingyue Wu
- Abstract summary: Quantum chaotic systems are conjectured to display a spectrum whose fine-grained features are well described by Random Matrix Theory (RMT)
We show that for Haar-random initial states in RMTs the mean and covariance of the Lanczos spectrum suffices to produce the full long time behavior of general survival probabilities.
This analysis suggests a notion of eigenstate complexity, the statistics of which differentiate integrable systems and classes of quantum chaos.
- Score: 0.8287206589886881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chaotic systems are conjectured to display a spectrum whose
fine-grained features (gaps and correlations) are well described by Random
Matrix Theory (RMT). We propose and develop a complementary version of this
conjecture: quantum chaotic systems display a Lanczos spectrum whose local
means and covariances are well described by RMT. To support this proposal, we
first demonstrate its validity in examples of chaotic and integrable systems.
We then show that for Haar-random initial states in RMTs the mean and
covariance of the Lanczos spectrum suffices to produce the full long time
behavior of general survival probabilities including the spectral form factor,
as well as the spread complexity. In addition, for initial states with
continuous overlap with energy eigenstates, we analytically find the long time
averages of the probabilities of Krylov basis elements in terms of the mean
Lanczos spectrum. This analysis suggests a notion of eigenstate complexity, the
statistics of which differentiate integrable systems and classes of quantum
chaos. Finally, we clarify the relation between spread complexity and the
universality classes of RMT by exploring various values of the Dyson index and
Poisson distributed spectra.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Spread and Spectral Complexity in Quantum Spin Chains: from Integrability to Chaos [0.0]
We explore spread and spectral complexity in quantum systems that exhibit a transition from integrability to chaos.
We find that the saturation value of spread complexity post-peak depends not only on the spectral statistics of the Hamiltonian, but also on the specific state.
We conjecture that the thermofield double state (TFD) is suitable for probing signatures of chaos in quantum many-body systems.
arXiv Detail & Related papers (2024-05-18T10:54:50Z) - Spectral form factor in chaotic, localized, and integrable open quantum many-body systems [5.849733770560258]
We numerically study the spectral statistics of open quantum many-body systems (OQMBS) as signatures of quantum chaos (or the lack thereof)
We show that the DSFF of chaotic OQMBS displays the $textitquadratic$ ramp-plateau behaviour of the Ginibre ensemble from random matrix theory.
arXiv Detail & Related papers (2024-05-02T18:04:04Z) - Full range spectral correlations and their spectral form factors in chaotic and integrable models [0.0]
Correlations between the eigenenergies of a system's spectrum can be a defining feature of quantum chaos.
We show how each spectral distance participates in building it -- the linear ramp cannot be formed by short-range energy correlations only.
We illustrate our findings in the XXZ spin chain with disorder, which interpolates between chaotic and integrable behavior.
arXiv Detail & Related papers (2023-11-15T19:00:01Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Random Matrix Theory of the Isospectral twirling [0.0]
We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems.
We show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.
arXiv Detail & Related papers (2020-12-14T16:29:15Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.