Swarm Systems as a Platform for Open-Ended Evolutionary Dynamics
- URL: http://arxiv.org/abs/2409.01469v1
- Date: Mon, 2 Sep 2024 21:12:18 GMT
- Title: Swarm Systems as a Platform for Open-Ended Evolutionary Dynamics
- Authors: Hiroki Sayama,
- Abstract summary: We review Swarm Chemistry and its variants as concrete sample cases to illustrate beneficial characteristics of heterogeneous swarm systems.
Applications to science, engineering, and art/entertainment as well as the directions of further research are also discussed.
- Score: 0.24475591916185496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial swarm systems have been extensively studied and used in computer science, robotics, engineering and other technological fields, primarily as a platform for implementing robust distributed systems to achieve pre-defined objectives. However, such swarm systems, especially heterogeneous ones, can also be utilized as an ideal platform for creating *open-ended evolutionary dynamics* that do not converge toward pre-defined goals but keep exploring diverse possibilities and generating novel outputs indefinitely. In this article, we review Swarm Chemistry and its variants as concrete sample cases to illustrate beneficial characteristics of heterogeneous swarm systems, including the cardinality leap of design spaces, multiscale structures/behaviors and their diversity, and robust self-organization, self-repair and ecological interactions of emergent patterns, all of which serve as the driving forces for open-ended evolutionary processes. Applications to science, engineering, and art/entertainment as well as the directions of further research are also discussed.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Software Engineering for Collective Cyber-Physical Ecosystems [4.1185708189502215]
Today's distributed and pervasive computing addresses large-scale cyber-physical ecosystems.
Recent developments in fields such as self-organising systems and robotics swarm have opened up a complementary perspective: treating systems as "collectives"
This article explores the motivations, state of the art, and implications of this "collective computing paradigm" in software engineering.
arXiv Detail & Related papers (2024-06-07T09:28:22Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-29T02:35:23Z) - Ecology, Spatial Structure, and Selection Pressure Induce Strong Signatures in Phylogenetic Structure [0.0]
We analyze phylogenies generated by manipulating spatial structure, ecology, and selection pressure.
We find that selection pressure, spatial structure, and ecology have characteristic effects on phylogenetic metrics.
We also find that sufficiently strong ecology can be detected in the presence of spatial structure.
arXiv Detail & Related papers (2024-05-12T10:35:19Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Towards Large-Scale Simulations of Open-Ended Evolution in Continuous
Cellular Automata [0.0]
We build large-scale evolutionary simulations using parallel computing framework JAX.
We report a number of system design choices, including implicit implementation of genetic operators.
We propose several factors that may further facilitate open-ended evolution.
arXiv Detail & Related papers (2023-04-12T06:40:11Z) - SoftZoo: A Soft Robot Co-design Benchmark For Locomotion In Diverse
Environments [111.91255476270526]
We introduce SoftZoo, a soft robot co-design platform for locomotion in diverse environments.
SoftZoo supports an extensive, naturally-inspired material set, including the ability to simulate environments such as flat ground, desert, wetland, clay, ice, snow, shallow water, and ocean.
It provides a variety of tasks relevant for soft robotics, including fast locomotion, agile turning, and path following, as well as differentiable design representations for morphology and control.
arXiv Detail & Related papers (2023-03-16T17:59:50Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z) - Hierarchically Organized Latent Modules for Exploratory Search in
Morphogenetic Systems [21.23182328329019]
We introduce a novel dynamic and modular architecture that enables unsupervised learning of a hierarchy of diverse representations.
We show that this system forms a discovery assistant that can efficiently adapt its diversity search towards preferences of a user.
arXiv Detail & Related papers (2020-07-02T15:28:27Z) - Synergetic Learning Systems: Concept, Architecture, and Algorithms [4.623783824925363]
We describe an artificial intelligence system called the Synergetic Learning Systems''
The system achieves intelligent information processing and decision-making in a given environment through cooperative/competitive synergetic learning.
It is expected that under our design criteria, the proposed system will eventually achieve artificial general intelligence through long term coevolution.
arXiv Detail & Related papers (2020-05-31T06:23:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.