Real-Time Multi-Scene Visibility Enhancement for Promoting Navigational Safety of Vessels Under Complex Weather Conditions
- URL: http://arxiv.org/abs/2409.01500v1
- Date: Mon, 2 Sep 2024 23:46:27 GMT
- Title: Real-Time Multi-Scene Visibility Enhancement for Promoting Navigational Safety of Vessels Under Complex Weather Conditions
- Authors: Ryan Wen Liu, Yuxu Lu, Yuan Gao, Yu Guo, Wenqi Ren, Fenghua Zhu, Fei-Yue Wang,
- Abstract summary: The visible-light camera has emerged as an essential imaging sensor for marine surface vessels in intelligent waterborne transportation systems.
The visual imaging quality inevitably suffers from several kinds of degradations under complex weather conditions.
We develop a general-purpose multi-scene visibility enhancement method to restore degraded images captured under different weather conditions.
- Score: 48.529493393948435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The visible-light camera, which is capable of environment perception and navigation assistance, has emerged as an essential imaging sensor for marine surface vessels in intelligent waterborne transportation systems (IWTS). However, the visual imaging quality inevitably suffers from several kinds of degradations (e.g., limited visibility, low contrast, color distortion, etc.) under complex weather conditions (e.g., haze, rain, and low-lightness). The degraded visual information will accordingly result in inaccurate environment perception and delayed operations for navigational risk. To promote the navigational safety of vessels, many computational methods have been presented to perform visual quality enhancement under poor weather conditions. However, most of these methods are essentially specific-purpose implementation strategies, only available for one specific weather type. To overcome this limitation, we propose to develop a general-purpose multi-scene visibility enhancement method, i.e., edge reparameterization- and attention-guided neural network (ERANet), to adaptively restore the degraded images captured under different weather conditions. In particular, our ERANet simultaneously exploits the channel attention, spatial attention, and reparameterization technology to enhance the visual quality while maintaining low computational cost. Extensive experiments conducted on standard and IWTS-related datasets have demonstrated that our ERANet could outperform several representative visibility enhancement methods in terms of both imaging quality and computational efficiency. The superior performance of IWTS-related object detection and scene segmentation could also be steadily obtained after ERANet-based visibility enhancement under complex weather conditions.
Related papers
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach.
In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
arXiv Detail & Related papers (2024-10-18T08:40:26Z) - Robust ADAS: Enhancing Robustness of Machine Learning-based Advanced Driver Assistance Systems for Adverse Weather [5.383130566626935]
This paper employs a Denoising Deep Neural Network as a preprocessing step to transform adverse weather images into clear weather images.
It improves driver visualization, which is critical for safe navigation in adverse weather conditions.
arXiv Detail & Related papers (2024-07-02T18:03:52Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
In nighttime driving scenes, insufficient and uneven lighting shrouds the scenes in darkness, resulting degradation of image quality and visibility.
We develop an image de-raining framework tailored for rainy nighttime driving scenes.
It aims to remove rain artifacts, enrich scene representation, and restore useful information.
arXiv Detail & Related papers (2024-02-28T09:02:33Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
This work compares different deep-learning architectures to perform underwater docking detection and classification.
A Generative Adversarial Network (GAN) is used to do image-to-image translation, converting the Gazebo simulation image into an underwater-looking image.
Results show an improvement of 20% in the high turbidity scenarios regardless of the underwater currents.
arXiv Detail & Related papers (2023-11-02T18:10:20Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for
Video-Empowered Intelligent Transportation [79.18450119567315]
Adverse weather conditions pose severe challenges for video-based transportation surveillance.
We propose a dual attention and dual frequency-guided dehazing network (termed DADFNet) for real-time visibility enhancement.
arXiv Detail & Related papers (2023-04-19T11:55:30Z) - Low-Light Hyperspectral Image Enhancement [90.84144276935464]
This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas.
Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach.
The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated.
arXiv Detail & Related papers (2022-08-05T08:45:52Z) - Task-Driven Deep Image Enhancement Network for Autonomous Driving in Bad
Weather [5.416049433853457]
In bad weather, visual perception is greatly affected by several degrading effects.
We introduce a new task-driven training strategy to guide the high-level task model suitable for both high-quality restoration of images and highly accurate perception.
Experiment results demonstrate that the proposed method improves the performance among lane and 2D object detection, and depth estimation largely under adverse weather.
arXiv Detail & Related papers (2021-10-14T08:03:33Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.