Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques
- URL: http://arxiv.org/abs/2410.14285v1
- Date: Fri, 18 Oct 2024 08:40:26 GMT
- Title: Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques
- Authors: Yugandhar Reddy Gogireddy, Jithendra Reddy Gogireddy,
- Abstract summary: The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach.
In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
- Score: 0.0
- License:
- Abstract: The difficulties of underwater image degradation due to light scattering, absorption, and fog-like particles which lead to low resolution and poor visibility are discussed in this study report. We suggest a sophisticated hybrid strategy that combines Multi-Scale Retinex (MSR) defogging methods with Super-Resolution Convolutional Neural Networks (SRCNN) to address these problems. The Retinex algorithm mimics human visual perception to reduce uneven lighting and fogging, while the SRCNN component improves the spatial resolution of underwater photos.Through the combination of these methods, we are able to enhance the clarity, contrast, and colour restoration of underwater images, offering a reliable way to improve image quality in difficult underwater conditions. The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach. In terms of sharpness, visibility, and feature retention, quantitative evaluation which use metrics like the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) demonstrates notable advances over conventional techniques.In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, where clear and high-resolution imaging is crucial for operational success, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
Related papers
- UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
Underwater image enhancement (UIE) plays a crucial role in various marine applications.
Current learning-based approaches frequently lack explicit prior knowledge about the physical processes involved in underwater image formation.
This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature incorporation.
arXiv Detail & Related papers (2024-08-20T08:48:33Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
This work compares different deep-learning architectures to perform underwater docking detection and classification.
A Generative Adversarial Network (GAN) is used to do image-to-image translation, converting the Gazebo simulation image into an underwater-looking image.
Results show an improvement of 20% in the high turbidity scenarios regardless of the underwater currents.
arXiv Detail & Related papers (2023-11-02T18:10:20Z) - UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer [26.15238399758745]
Underwater images often exhibit poor quality, distorted color balance and low contrast.
Current deep learning methods rely on Neural Convolutional Networks (CNNs) that lack the multi-scale enhancement.
We propose a Multi-scale Transformer-based Network for enhancing images at multiple frequencies via semi-supervised learning.
arXiv Detail & Related papers (2023-10-31T06:19:09Z) - Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks.
We propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks.
Experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T06:52:05Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - HybrUR: A Hybrid Physical-Neural Solution for Unsupervised Underwater
Image Restoration [18.690940762032568]
We propose a data- and physics-driven unsupervised architecture that learns underwater vision restoration from unpaired underwater-terrestrial images.
We employ the Jaffe-McGlamery degradation theory to design the generation models, and use neural networks to describe the process of underwater degradation.
Our experimental results show that the proposed method is able to perform high-quality restoration for unconstrained underwater images without any supervision.
arXiv Detail & Related papers (2021-07-06T15:00:30Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR)
We design an SR framework that analyzes the regional information content on each patch of the low-resolution image.
We show substantial decrease in inference time while achieving similar performance to that of existing deep SR methods.
arXiv Detail & Related papers (2020-08-03T13:55:39Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.