Benchmarking Cognitive Domains for LLMs: Insights from Taiwanese Hakka Culture
- URL: http://arxiv.org/abs/2409.01556v2
- Date: Wed, 25 Sep 2024 00:31:18 GMT
- Title: Benchmarking Cognitive Domains for LLMs: Insights from Taiwanese Hakka Culture
- Authors: Chen-Chi Chang, Ching-Yuan Chen, Hung-Shin Lee, Chih-Cheng Lee,
- Abstract summary: This study introduces a benchmark designed to evaluate the performance of large language models (LLMs) in understanding and processing cultural knowledge.
The study develops a multi-dimensional framework that systematically assesses LLMs across six cognitive domains: Remembering, Understanding, Applying, Analyzing, evaluating, and Creating.
The results highlight the effectiveness of RAG in improving accuracy across all cognitive domains, particularly in tasks requiring precise retrieval and application of cultural knowledge.
- Score: 4.467334566487944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a comprehensive benchmark designed to evaluate the performance of large language models (LLMs) in understanding and processing cultural knowledge, with a specific focus on Hakka culture as a case study. Leveraging Bloom's Taxonomy, the study develops a multi-dimensional framework that systematically assesses LLMs across six cognitive domains: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating. This benchmark extends beyond traditional single-dimensional evaluations by providing a deeper analysis of LLMs' abilities to handle culturally specific content, ranging from basic recall of facts to higher-order cognitive tasks such as creative synthesis. Additionally, the study integrates Retrieval-Augmented Generation (RAG) technology to address the challenges of minority cultural knowledge representation in LLMs, demonstrating how RAG enhances the models' performance by dynamically incorporating relevant external information. The results highlight the effectiveness of RAG in improving accuracy across all cognitive domains, particularly in tasks requiring precise retrieval and application of cultural knowledge. However, the findings also reveal the limitations of RAG in creative tasks, underscoring the need for further optimization. This benchmark provides a robust tool for evaluating and comparing LLMs in culturally diverse contexts, offering valuable insights for future research and development in AI-driven cultural knowledge preservation and dissemination.
Related papers
- LLM-GLOBE: A Benchmark Evaluating the Cultural Values Embedded in LLM Output [8.435090588116973]
We propose the LLM-GLOBE benchmark for evaluating the cultural value systems of LLMs.
We then leverage the benchmark to compare the values of Chinese and US LLMs.
Our methodology includes a novel "LLMs-as-a-Jury" pipeline which automates the evaluation of open-ended content.
arXiv Detail & Related papers (2024-11-09T01:38:55Z) - CROPE: Evaluating In-Context Adaptation of Vision and Language Models to Culture-Specific Concepts [45.77570690529597]
We introduce CROPE, a visual question answering benchmark designed to probe the knowledge of culture-specific concepts.
Our evaluation of several state-of-the-art open Vision and Language models shows large performance disparities between culture-specific and common concepts.
Experiments with contextual knowledge indicate that models struggle to effectively utilize multimodal information and bind culture-specific concepts to their depictions.
arXiv Detail & Related papers (2024-10-20T17:31:19Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
Internal mechanisms that contribute to the effectiveness of RAG systems remain underexplored.
Our experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors.
We propose several strategies to enhance RAG's efficiency and effectiveness through expert activation.
arXiv Detail & Related papers (2024-10-20T16:08:54Z) - Methodology of Adapting Large English Language Models for Specific Cultural Contexts [10.151487049108626]
We propose a rapid adaptation method for large models in specific cultural contexts.
The adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values.
arXiv Detail & Related papers (2024-06-26T09:16:08Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics [2.330270848695646]
This paper explores the potential of Large Language Models to bridge the gap by systematically converting investigator-derived insights into quantifiable, actionable features.
We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models.
The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques.
arXiv Detail & Related papers (2024-05-11T13:23:43Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
We introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build challenging evaluation dataset.
Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions.
CULTURALBENCH-V0.1 is a compact yet high-quality evaluation dataset with users' red-teaming attempts.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - CDEval: A Benchmark for Measuring the Cultural Dimensions of Large Language Models [41.885600036131045]
CDEval is a benchmark aimed at evaluating the cultural dimensions of Large Language Models.
It is constructed by incorporating both GPT-4's automated generation and human verification, covering six cultural dimensions across seven domains.
arXiv Detail & Related papers (2023-11-28T02:01:25Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.