Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics
- URL: http://arxiv.org/abs/2405.08017v1
- Date: Sat, 11 May 2024 13:23:43 GMT
- Title: Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics
- Authors: Phoebe Jing, Yijing Gao, Yuanhang Zhang, Xianlong Zeng,
- Abstract summary: This paper explores the potential of Large Language Models to bridge the gap by systematically converting investigator-derived insights into quantifiable, actionable features.
We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models.
The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques.
- Score: 2.330270848695646
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the realm of predictive analytics, the nuanced domain knowledge of investigators often remains underutilized, confined largely to subjective interpretations and ad hoc decision-making. This paper explores the potential of Large Language Models (LLMs) to bridge this gap by systematically converting investigator-derived insights into quantifiable, actionable features that enhance model performance. We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models. Through a series of case studies, we demonstrate how this approach not only preserves the critical human expertise within the investigative process but also scales the impact of this knowledge across various prediction tasks. The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques. This study paves the way for more sophisticated, knowledge-driven analytics in fields where expert insight is paramount.
Related papers
- Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
Our goal is to build a regression model that can process numerical data and make probabilistic predictions at arbitrary locations.
We start by exploring strategies for eliciting explicit, coherent numerical predictive distributions from Large Language Models.
We demonstrate the ability to usefully incorporate text into numerical predictions, improving predictive performance and giving quantitative structure that reflects qualitative descriptions.
arXiv Detail & Related papers (2024-05-21T15:13:12Z) - Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification [0.8232137862012223]
This study investigates the potential of Large Language Models (LLMs) in generating and providing domain-specific information.
To achieve this, an LLM is integrated into a pipeline that utilizes Knowledge Graphs and pre-trained semantic vectors.
Our findings reveal that the integration of LLM-based embeddings, in combination with general-purpose pre-trained embeddings, leads to substantial performance improvements.
arXiv Detail & Related papers (2024-03-18T18:08:44Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - Augmenting LLMs with Knowledge: A survey on hallucination prevention [0.0]
This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources.
While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules.
arXiv Detail & Related papers (2023-09-28T14:09:58Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.