論文の概要: Smoothed Robust Phase Retrieval
- arxiv url: http://arxiv.org/abs/2409.01570v1
- Date: Tue, 3 Sep 2024 03:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 03:06:29.165482
- Title: Smoothed Robust Phase Retrieval
- Title(参考訳): 滑らかなロバスト相検索
- Authors: Zhong Zheng, Lingzhou Xue,
- Abstract要約: 本稿では、スムーズな損失関数の族に基づくロバスト位相検索(SRP)を提案する。
SRPRの数値性能には、シミュレーションと画像回復の両方の実験が提供される。
- 参考スコア(独自算出の注目度): 2.4286119312029606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The phase retrieval problem in the presence of noise aims to recover the signal vector of interest from a set of quadratic measurements with infrequent but arbitrary corruptions, and it plays an important role in many scientific applications. However, the essential geometric structure of the nonconvex robust phase retrieval based on the $\ell_1$-loss is largely unknown to study spurious local solutions, even under the ideal noiseless setting, and its intrinsic nonsmooth nature also impacts the efficiency of optimization algorithms. This paper introduces the smoothed robust phase retrieval (SRPR) based on a family of convolution-type smoothed loss functions. Theoretically, we prove that the SRPR enjoys a benign geometric structure with high probability: (1) under the noiseless situation, the SRPR has no spurious local solutions, and the target signals are global solutions, and (2) under the infrequent but arbitrary corruptions, we characterize the stationary points of the SRPR and prove its benign landscape, which is the first landscape analysis of phase retrieval with corruption in the literature. Moreover, we prove the local linear convergence rate of gradient descent for solving the SRPR under the noiseless situation. Experiments on both simulated datasets and image recovery are provided to demonstrate the numerical performance of the SRPR.
- Abstract(参考訳): ノイズの存在下での位相探索問題は、希少かつ任意の破損を伴う二次的な測定の集合から興味のある信号ベクトルを復元することを目的としており、多くの科学的応用において重要な役割を果たす。
しかし、$\ell_1$-lossに基づく非凸ロバスト位相検索の基本的な幾何学構造は、理想的なノイズのない設定下であっても、急激な局所解を研究することはほとんど知られていない。
本稿では、畳み込み型スムーズな損失関数の族に基づくスムーズなロバスト位相探索(SRPR)を提案する。
理論的には、SRPRは高い確率で良質な幾何学的構造を保っていることを証明している:(1)ノイズのない状況下では、SRPRは急激な局所解がなく、目的の信号は大域的な解であり、(2)頻繁だが任意な汚職の下では、SRPRの静止点を特徴づけ、その良質な景観を証明し、文献の汚職による位相回復の初めてのランドスケープ解析である。
さらに、雑音のない状況下でSRPRを解くために勾配降下の局所線形収束速度を証明した。
SRPRの数値性能を示すため、シミュレーションデータセットと画像復元の両方の実験を行った。
関連論文リスト
- Coordinated Sparse Recovery of Label Noise [2.9495895055806804]
本研究は、ラベルノイズがインスタンス依存であるロバストな分類タスクに焦点を当てる。
協調スパース回収法(CSR)を提案する。
CSRは、モデル予測とノイズ回復を調整するために、協調行列と信頼重みを導入し、エラーリークを低減する。
CSRに基づいて,共同サンプル選択戦略を設計し,CSR+と呼ばれる包括的で強力な学習フレームワークを構築した。
論文 参考訳(メタデータ) (2024-04-07T03:41:45Z) - On the Global Convergence of Natural Actor-Critic with Two-layer Neural
Network Parametrization [38.32265770020665]
本稿では,ニューラルネットワークを用いた自然なアクター批判アルゴリズムについて検討する。
本研究の目的は,本アルゴリズムの性能特性のより深い理解を実現することにある。
論文 参考訳(メタデータ) (2023-06-18T06:22:04Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
本稿では、上記の問題に対処するために、正規化フロー(BlindSRSNF)に基づく新しいブラインドSRフレームワークを提案する。
BlindSRSNFは、低解像度(LR)画像が与えられた高解像度画像空間上の条件確率分布を、確率の変動境界を明示的に最適化することによって学習する。
提案アルゴリズムは,シミュレーションLRと実世界RSIの両方において,視覚的品質の優れたSR結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-14T12:37:32Z) - Deep filter bank regression for super-resolution of anisotropic MR brain
images [18.41979609846356]
2次元マルチスライス磁気共鳴(MR)取得では、スループレーン信号は通常、インプレーン信号よりも低解像度である。
超高分解能(SR)法は、基礎となる高分解能ボリュームを回復することを目的としているが、推定された高周波数情報は、エンドツーエンドのデータ駆動トレーニングを通じて暗黙的である。
そこで本研究では,特定スキャンの異方性獲得に対応する完全再構成フィルタバンクの完成を近似する2段階の手法を提案する。
論文 参考訳(メタデータ) (2022-09-06T16:05:19Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - On the Role of Entropy-based Loss for Learning Causal Structures with
Continuous Optimization [27.613220411996025]
因果構造学習問題を最小二乗損失を用いた連続最適化問題として定式化する。
ガウス雑音の仮定に違反すると因果方向の同定が妨げられることを示す。
より一般的なエントロピーに基づく損失は、任意の雑音分布下での確率スコアと理論的に一致している。
論文 参考訳(メタデータ) (2021-06-05T08:29:51Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。