論文の概要: Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions
- arxiv url: http://arxiv.org/abs/2507.05647v1
- Date: Tue, 08 Jul 2025 03:58:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.556805
- Title: Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions
- Title(参考訳): ノイズ条件下における拡散型リミテッドアングルCT再構成
- Authors: Jiaqi Guo, Santiago López-Tapia,
- Abstract要約: 角投影の欠如は、再構成された画像の不完全なシノグラムやアーティファクトに繋がる。
本稿では, 平均回帰微分方程式(MR-SDE)を用いて, 角ビューの欠落を解消する拡散型フレームワークを提案する。
現実的な雑音下でのロバスト性を改善するために,推論時間不確実性を明示的にモデル化する新しいノイズ認識機構を提案する。
- 参考スコア(独自算出の注目度): 10.287171164361608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited-Angle Computed Tomography (LACT) is a challenging inverse problem where missing angular projections lead to incomplete sinograms and severe artifacts in the reconstructed images. While recent learning-based methods have demonstrated effectiveness, most of them assume ideal, noise-free measurements and fail to address the impact of measurement noise. To overcome this limitation, we treat LACT as a sinogram inpainting task and propose a diffusion-based framework that completes missing angular views using a Mean-Reverting Stochastic Differential Equation (MR-SDE) formulation. To improve robustness under realistic noise, we propose RNSD$^+$, a novel noise-aware rectification mechanism that explicitly models inference-time uncertainty, enabling reliable and robust reconstruction. Extensive experiments demonstrate that our method consistently surpasses baseline models in data consistency and perceptual quality, and generalizes well across varying noise intensity and acquisition scenarios.
- Abstract(参考訳): リミテッドアングルCT(Limited-Angle Computed Tomography, LACT)は、角投射の欠如が、再構成された画像の不完全なシングラムや深刻なアーティファクトに繋がる、難しい逆問題である。
近年の学習に基づく手法は有効性を示しているが、そのほとんどは理想的なノイズのない測定を前提としており、計測ノイズの影響に対処できない。
この制限を克服するため, LACT を音韻塗装作業として扱うとともに, 平均回帰確率微分方程式(MR-SDE)を用いて, 角像の欠落を解消する拡散型フレームワークを提案する。
現実的な雑音下でのロバスト性を改善するために,提案するRNSD$^+$は,推論時間不確実性を明示的にモデル化し,信頼性とロバストな再構成を可能にする新しいノイズ認識補正機構である。
広汎な実験により,本手法はデータ一貫性と知覚的品質のベースラインモデルを一貫して超越し,様々なノイズ強度や獲得シナリオにまたがる一般化を図っている。
関連論文リスト
- Low-resolution Prior Equilibrium Network for CT Reconstruction [3.5639148953570836]
本稿では,低分解能画像を導入し,ネットワークの堅牢性を改善するための効果的な正規化項を得る,新しいディープラーニングベースのCT再構成モデルを提案する。
狭角化と狭角化の両問題を実験的に検討し, ノイズ低減, コントラスト・ツー・ノイズ比, エッジ細部保存の両面において, エンド・ツー・エンドの低分解能事前平衡モデルが他の最先端手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-01-28T13:59:58Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionADは、再構成サブネットワークとセグメンテーションサブネットワークからなる、新しい異常検出パイプラインである。
高速なワンステップデノゲーションパラダイムは、同等の再現品質を維持しながら、数百倍の加速を達成する。
異常の出現の多様性を考慮し、複数のノイズスケールの利点を統合するためのノルム誘導パラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
フローベースジョイントイメージとノイズモデル(FINO)
本研究では,フローベース・ジョイント・イメージ・アンド・ノイズモデル(FINO)を提案する。
論文 参考訳(メタデータ) (2021-11-11T02:51:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。