Towards Cross-Lingual Explanation of Artwork in Large-scale Vision Language Models
- URL: http://arxiv.org/abs/2409.01584v2
- Date: Fri, 14 Feb 2025 09:56:31 GMT
- Title: Towards Cross-Lingual Explanation of Artwork in Large-scale Vision Language Models
- Authors: Shintaro Ozaki, Kazuki Hayashi, Yusuke Sakai, Hidetaka Kamigaito, Katsuhiko Hayashi, Taro Watanabe,
- Abstract summary: This study created an extended dataset in multiple languages without relying on machine translation.
It examined whether Instruction-Tuning in resource-rich English improves performance in other languages.
- Score: 28.716852515539497
- License:
- Abstract: As the performance of Large-scale Vision Language Models (LVLMs) improves, they are increasingly capable of responding in multiple languages, and there is an expectation that the demand for explanations generated by LVLMs will grow. However, pre-training of Vision Encoder and the integrated training of LLMs with Vision Encoder are mainly conducted using English training data, leaving it uncertain whether LVLMs can completely handle their potential when generating explanations in languages other than English. In addition, multilingual QA benchmarks that create datasets using machine translation have cultural differences and biases, remaining issues for use as evaluation tasks. To address these challenges, this study created an extended dataset in multiple languages without relying on machine translation. This dataset that takes into account nuances and country-specific phrases was then used to evaluate the generation explanation abilities of LVLMs. Furthermore, this study examined whether Instruction-Tuning in resource-rich English improves performance in other languages. Our findings indicate that LVLMs perform worse in languages other than English compared to English. In addition, it was observed that LVLMs struggle to effectively manage the knowledge learned from English data. Our dataset is available at https://huggingface.co/datasets/naist-nlp/MultiExpArt
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
Reasoning capabilities are crucial for Large Language Models (LLMs)
We propose MindMerger, which merges LLMs with the external language understanding capabilities from multilingual models.
MindMerger consistently outperforms all baselines, especially in low-resource languages.
arXiv Detail & Related papers (2024-05-27T17:41:54Z) - Amharic LLaMA and LLaVA: Multimodal LLMs for Low Resource Languages [0.0]
Large Language Models (LLMs) have shown incredible proficiency at natural language processing tasks.
LLMs often struggle to perform well on low-resource languages because there is so little training data available.
In this work, we explore training LLaMA-2 to speak Amharic, a language which is spoken by over 50 million people world wide.
arXiv Detail & Related papers (2024-03-11T01:04:36Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
Open-source large language models (LLMs) have gained significant strength across diverse fields.
In this work, we construct an open-source multilingual supervised fine-tuning dataset.
The resulting UltraLink dataset comprises approximately 1 million samples across five languages.
arXiv Detail & Related papers (2024-02-07T05:05:53Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z) - El Departamento de Nosotros: How Machine Translated Corpora Affects
Language Models in MRC Tasks [0.12183405753834563]
Pre-training large-scale language models (LMs) requires huge amounts of text corpora.
We study the caveats of applying directly translated corpora for fine-tuning LMs for downstream natural language processing tasks.
We show that careful curation along with post-processing lead to improved performance and overall LMs robustness.
arXiv Detail & Related papers (2020-07-03T22:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.