論文の概要: MCBA: A Matroid Constraint-Based Approach for Composite Service Recommendation Considering Compatibility and Diversity
- arxiv url: http://arxiv.org/abs/2409.01600v1
- Date: Tue, 3 Sep 2024 04:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:53:07.853298
- Title: MCBA: A Matroid Constraint-Based Approach for Composite Service Recommendation Considering Compatibility and Diversity
- Title(参考訳): MCBA:適合性と多様性を考慮した複合サービスレコメンデーションのためのマトロイド制約に基づくアプローチ
- Authors: Ying Sun, Xiao Wang, Hanchuan Xu, Zhongjie Wang,
- Abstract要約: 本稿では,複合サービスレコメンデーションのためのMatroid Constraint-Based Approach (MCBA)を提案する。
第1段階では、API合成問題は最小グループスタイナーツリー(M GST)問題として定式化される。
第2段階では, 分割マトロイド制約(MMR-PMC)の下でのMarginal Relevance法を用いて, 推薦の多様性を確保する。
- 参考スコア(独自算出の注目度): 9.17544142889514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing popularity of microservices, many companies are encapsulating their business processes as Web APIs for remote invocation. These lightweight Web APIs offer mashup developers an efficient way to achieve complex functionalities without starting from scratch. However, this also presents challenges, such as the concentration of developers'search results on popular APIs limiting diversity, and difficulties in verifying API compatibility. A method is needed to recommend diverse compositions of compatible APIs that fulfill mashup functional requirements from a large pool of candidate APIs. To tackle this issue, this paper introduces a Matroid Constraint-Based Approach (MCBA) for composite service recommendation, consisting of two stages: API composition discovery focusing on compatibility and top-k composition recommendation focusing on diversity. In the first stage, the API composition issue is formulated as a minimal group Steiner tree (MGST) problem, subsequently addressed by a "compression-solution" algorithm. In the second stage, a Maximum Marginal Relevance method under partition matroid constraints (MMR-PMC) is employed to ensure recommendation diversity. Comprehensive experiments on the real-world dataset show that MCBA surpasses several state-of-the-art methods in terms of accuracy, compatibility, diversity, and efficiency.
- Abstract(参考訳): マイクロサービスの人気が高まり、多くの企業がリモート呼び出しのためのWeb APIとしてビジネスプロセスをカプセル化している。
これらの軽量Web APIは、マッシュアップ開発者に、スクラッチから始めることなく複雑な機能を実現する効率的な方法を提供する。
しかし、これはまた、多様性を制限する人気のあるAPIに対する開発者の検索結果の集中、API互換性の検証の難しさといった課題も示している。
多数の候補APIからマッシュアップ機能要件を満たす、互換性のあるAPIの多様な構成を推奨するためには、方法が必要である。
本稿では,適合性に着目したAPIコンポジション発見と多様性を重視したトップkコンポジションレコメンデーションという,複合サービスレコメンデーションのためのMatroid Constraint-Based Approach(MCBA)を紹介する。
第一段階では、API合成問題は最小グループスタイナーツリー(MGST)問題として定式化され、その後「圧縮解法」アルゴリズムによって対処される。
第2段階では、分割マトロイド制約(MMR-PMC)の下での最大マージナル関連法を用いて、推薦の多様性を確保する。
実世界のデータセットに関する総合的な実験によると、MCBAは精度、互換性、多様性、効率の点で最先端のいくつかの手法を超越している。
関連論文リスト
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - ShortcutsBench: A Large-Scale Real-world Benchmark for API-based Agents [7.166156709980112]
我々は、APIベースのエージェントの包括的な評価のための大規模なベンチマークであるtextscShortcutsBenchを紹介する。
textscShortcutsBenchには、Apple Inc.のオペレーティングシステムから多くの真のAPIが含まれている。
評価の結果,APIの選択やパラメータの充足,システムやユーザからの必要な情報要求など,複雑なクエリを扱う上での重大な制限が明らかになった。
論文 参考訳(メタデータ) (2024-06-28T08:45:02Z) - A Large-scale Investigation of Semantically Incompatible APIs behind Compatibility Issues in Android Apps [13.24503570840706]
Android Open Source Project(AOSP)において、互換性のないAPIを大規模に発見する。
非互換なAPI,特にセマンティックな変更を検出するための統合フレームワークを提案する。
提案手法は,バージョン4からバージョン33までの互換性のない5,481のAPIを検出する。
論文 参考訳(メタデータ) (2024-06-25T10:12:37Z) - A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We developed a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints。
2つのよく知られた実世界のアプリケーションでその効果を実証する。
論文 参考訳(メタデータ) (2024-06-14T15:59:36Z) - MoME: Mixture of Multimodal Experts for Cancer Survival Prediction [46.520971457396726]
生存分析は、難しい課題として、全体スライド画像(WSI)とゲノムデータを総合的な意思決定のために統合する必要がある。
従来の手法ではコアテンション(co-attention)方式が用いられており、この手法は両方のモダリティから特徴を分離した後にのみ融合する。
符号化と融合を同時に行うBiased Progressive Clever(BPE)パラダイムを提案する。
論文 参考訳(メタデータ) (2024-06-14T03:44:33Z) - What Makes Good Collaborative Views? Contrastive Mutual Information Maximization for Multi-Agent Perception [52.41695608928129]
マルチエージェント認識(MAP)は、複数のソースからのデータを解釈することで、自律システムが複雑な環境を理解することを可能にする。
本稿では,MAPにおける協調的視点の「良い」特性を探求することに焦点を当てた中間的協調について検討する。
中間コラボレーションのための新しいフレームワークCMiMCを提案する。
論文 参考訳(メタデータ) (2024-03-15T07:18:55Z) - Hybrid Relation Guided Set Matching for Few-shot Action Recognition [51.3308583226322]
本稿では,2つの鍵成分を組み込んだHybrid Relation Guided Set Matching (HyRSM) 手法を提案する。
ハイブリッドリレーションモジュールの目的は、エピソード内の関連関係とクロスビデオの完全活用により、タスク固有の埋め込みを学習することである。
我々は,HyRSMを6つの挑戦的ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-04-28T11:43:41Z) - Diversity-aware Web APIs Recommendation with Compatibility Guarantee [5.9601266637512085]
多様性を意識した互換性駆動型Web APIレコメンデーションアプローチであるDivCARを提案する。
DivCARは、事前構築された相関グラフ上にランダムウォークサンプリング手法を用いて、多様な相関グラフを生成する。
多様な相関グラフを用いて、互換性のあるWeb APIレコメンデーション問題を最小グループSteiner木探索問題としてモデル化する。
論文 参考訳(メタデータ) (2021-08-10T00:20:34Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
既存のモデル圧縮アプローチでは、さまざまなハードウェアデプロイメントに対応するために、さまざまな制約にまたがる再圧縮や微調整が必要となる。
圧縮を一度行い、至るところに展開するための新しいアプローチであるYOCO-BERTを提案する。
最先端のアルゴリズムと比較すると、YOCO-BERTはよりコンパクトなモデルを提供するが、GLUEベンチマークの平均精度は2.1%-4.5%向上している。
論文 参考訳(メタデータ) (2021-06-04T12:17:44Z) - FrugalMCT: Efficient Online ML API Selection for Multi-Label
Classification Tasks [27.35907550712252]
OCRなどのマルチラベル分類タスクは、サービス産業としての機械学習の成長の主要な焦点です。
ユーザの予算を尊重しつつ、異なるデータに適応的に利用するAPIをオンライン方式で選択する原則化されたフレームワークであるFrugalMCTを提案する。
マルチラベル画像分類、シーンテキスト認識、名前付きエンティティ認識などのタスクに対して、Google、Microsoft、Amazon、IBM、TencentなどのML APIを使用した体系的な実験を行う。
論文 参考訳(メタデータ) (2021-02-18T02:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。