Single nuclear spin detection and control in a van der Waals material
- URL: http://arxiv.org/abs/2409.01601v1
- Date: Tue, 3 Sep 2024 04:47:35 GMT
- Title: Single nuclear spin detection and control in a van der Waals material
- Authors: Xingyu Gao, Sumukh Vaidya, Kejun Li, Saakshi Dikshit, Shimin Zhang, Peng Ju, Kunhong Shen, Yuanbin Jin, Yuan Ping, Tongcang Li,
- Abstract summary: Recently, single spin defects were discovered in hexagonal boron nitride (hBN), a layered van der Waals (vdW) material.
We created single spin defects in hBN using $13$C ion implantation and identified three distinct defect types.
For the first time, we demonstrated atomic-scale NMR and coherent control of individual nuclear spins in a vdW material.
- Score: 7.00960815874496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically active spin defects in solids are leading candidates for quantum sensing and quantum networking. Recently, single spin defects were discovered in hexagonal boron nitride (hBN), a layered van der Waals (vdW) material. Due to its two-dimensional structure, hBN allows spin defects to be positioned closer to target samples than in three-dimensional crystals, making it ideal for atomic-scale quantum sensing, including nuclear magnetic resonance (NMR) of single molecules. However, the chemical structures of these defects remain unknown, and detecting a single nuclear spin with an hBN spin defect has been elusive. In this study, we created single spin defects in hBN using $^{13}$C ion implantation and identified three distinct defect types. We observed both $S=1$ and $S=1/2$ spin states within a single hBN spin defect, with only the $S=1/2$ states showing strong hyperfine interactions with nearby $^{13}$C nuclear spins. For the first time, we demonstrated atomic-scale NMR and coherent control of individual nuclear spins in a vdW material. By comparing experimental results with density-functional theory calculations, we propose chemical structures for these spin defects. Our work advances the understanding of single spin defects in hBN and provides a pathway to enhance quantum sensing using hBN spin defects with nuclear spins as quantum memories.
Related papers
- Experimental observation of spin defects in van der Waals material GeS$_2$ [0.0]
Two-dimensional (2D) materials such as hexagonal boron nitride (hBN) attract significant attention for their potential quantum applications.
Here, we present another 2D material germanium disulfide ($beta$-GeS$$) characterized by a wide bandgap and potential nuclear-spin-free lattice.
Our findings reveal the presence of more than two distinct types of spin defects in single-crystal $beta$-GeS$$.
arXiv Detail & Related papers (2024-10-24T16:29:05Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Quantum sensing and imaging with spin defects in hexagonal boron nitride [2.8409310270487538]
Color centers in hexagonal boron nitride (hBN) have emerged as promising candidates for a new wave of quantum applications.
The recently discovered optically addressable spin defects in hBN provide a quantum interface between photons and electron spins for quantum sensing applications.
This review summarizes the rapidly evolving field of nanoscale and microscale quantum sensing with spin defects in hBN.
arXiv Detail & Related papers (2023-02-22T06:21:28Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride [0.0]
Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms.
Here we rely on hBN crystals isotopically enriched with either $10$B or $11$B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared.
arXiv Detail & Related papers (2021-12-19T15:51:07Z) - $\textit{Ab initio}$ and group theoretical study of properties of the
$\text{C}_\text{2}\text{C}_\text{N}$ carbon trimer defect in h-BN [0.0]
Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing.
Recent studies suggest that carbon trimers might be the defect responsible for single-photon emission in the visible spectral range in h-BN.
arXiv Detail & Related papers (2021-10-18T21:27:20Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Room Temperature Coherent Control of Spin Defects in hexagonal Boron
Nitride [0.0]
Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications.
We realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN)
Our results are important for employment of van der Waals materials for quantum technologies.
arXiv Detail & Related papers (2020-10-23T16:31:37Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.