Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride
- URL: http://arxiv.org/abs/2112.10176v1
- Date: Sun, 19 Dec 2021 15:51:07 GMT
- Title: Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride
- Authors: A. Haykal, R. Tanos, N. Minotto, A. Durand, F. Fabre, J. Li, J. H.
Edgar, V. Ivady, A. Gali, T. Michel, A. Dr\'eau, B. Gil, G. Cassabois, and V.
Jacques
- Abstract summary: Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms.
Here we rely on hBN crystals isotopically enriched with either $10$B or $11$B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin defects in hexagonal boron nitride (hBN) are promising quantum systems
for the design of flexible two-dimensional quantum sensing platforms. Here we
rely on hBN crystals isotopically enriched with either $^{10}$B or $^{11}$B to
investigate the isotope-dependent properties of a spin defect featuring a
broadband photoluminescence signal in the near infrared. By analyzing the
hyperfine structure of the spin defect while changing the boron isotope, we
first unambiguously confirm that it corresponds to the negatively-charged
boron-vacancy center (${\rm V}_{\rm B}^-$). We then show that its spin
coherence properties are slightly improved in $^{10}$B-enriched samples. This
is supported by numerical simulations employing cluster correlation expansion
methods, which reveal the importance of the hyperfine Fermi contact term for
calculating the coherence time of point defects in hBN. Using cross-relaxation
spectroscopy, we finally identify dark electron spin impurities as an
additional source of decoherence. This work provides new insights into the
properties of ${\rm V}_{\rm B}^-$ spin defects, which are valuable for the
future development of hBN-based quantum sensing foils.
Related papers
- Isotopic control of the boron-vacancy spin defect in hexagonal boron
nitride [0.0]
We show that isotopic purification of hBN with $15$N yields a simplified and well-resolved hyperfine structure of V$_textB-$ centers.
We then demonstrate optically-induced polarization of $15$N nuclei in h$10$B$15$N, whose mechanism relies on electron-nuclear spin mixing in the V$_textB-$ ground state.
arXiv Detail & Related papers (2023-07-13T14:26:22Z) - Isotope engineering for spin defects in van der Waals materials [3.76897330943914]
We grow isotopically purified $mathrmh10mathrmB15mathrmN crystals in hexagonal boron nitride (hBN)
Compared to $mathrmV_mathrmB-$ in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded $mathrmV_mathrmB-$ spin transitions.
For quantum sensing, $mathrmB-$ centers in our $mathrmh10mathrmB15mathrm
arXiv Detail & Related papers (2023-07-12T20:10:34Z) - Coherent dynamics of strongly interacting electronic spin defects in
hexagonal boron nitride [3.93972364832565]
Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies.
Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy centers in hexagonal boron nitride (hBN) with varying defect density.
Our results provide new insights on the spin and charge properties of $mathrmV_mathrmB-$, which are important for future use of defects in hBN as quantum sensors and simulators.
arXiv Detail & Related papers (2022-10-20T18:00:00Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - $\textit{Ab initio}$ and group theoretical study of properties of the
$\text{C}_\text{2}\text{C}_\text{N}$ carbon trimer defect in h-BN [0.0]
Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing.
Recent studies suggest that carbon trimers might be the defect responsible for single-photon emission in the visible spectral range in h-BN.
arXiv Detail & Related papers (2021-10-18T21:27:20Z) - Generation of Spin Defects by Ion Implantation in Hexagonal Boron
Nitride [0.0]
Spin defects in two-dimensional materials are supposed to have unique superiority in quantum sensing since their atomatic thickness.
Here, we demonstrate that the negatively boron charged vacancy (V$ _textB- $) with good spin properties in hexagonal boron nitride can be generated by ion implantation.
arXiv Detail & Related papers (2021-05-25T15:59:15Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.