PMLBmini: A Tabular Classification Benchmark Suite for Data-Scarce Applications
- URL: http://arxiv.org/abs/2409.01635v1
- Date: Tue, 3 Sep 2024 06:13:03 GMT
- Title: PMLBmini: A Tabular Classification Benchmark Suite for Data-Scarce Applications
- Authors: Ricardo Knauer, Marvin Grimm, Erik Rodner,
- Abstract summary: PMLBmini is a benchmark suite of 44 binary classification datasets with sample sizes $leq$ 500.
We use our suite to thoroughly evaluate current automated machine learning (AutoML) frameworks.
Our analysis reveals that state-of-the-art AutoML and deep learning approaches often fail to appreciably outperform even a simple logistic regression baseline.
- Score: 2.3700911865675187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practice, we are often faced with small-sized tabular data. However, current tabular benchmarks are not geared towards data-scarce applications, making it very difficult to derive meaningful conclusions from empirical comparisons. We introduce PMLBmini, a tabular benchmark suite of 44 binary classification datasets with sample sizes $\leq$ 500. We use our suite to thoroughly evaluate current automated machine learning (AutoML) frameworks, off-the-shelf tabular deep neural networks, as well as classical linear models in the low-data regime. Our analysis reveals that state-of-the-art AutoML and deep learning approaches often fail to appreciably outperform even a simple logistic regression baseline, but we also identify scenarios where AutoML and deep learning methods are indeed reasonable to apply. Our benchmark suite, available on https://github.com/RicardoKnauer/TabMini , allows researchers and practitioners to analyze their own methods and challenge their data efficiency.
Related papers
- A Comprehensive Benchmark of Machine and Deep Learning Across Diverse Tabular Datasets [0.6144680854063939]
We introduce a benchmark aimed at better characterizing types of datasets where Deep Learning models excel.
We evaluate 111 datasets with 20 different models, including both regression and classification tasks.
Building on the results of this benchmark, we train a model that predicts scenarios where DL models outperform alternative methods with 86.1% accuracy.
arXiv Detail & Related papers (2024-08-27T06:58:52Z) - TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks [30.922069185335246]
We find two common characteristics of tabular data in typical industrial applications that are underrepresented in the datasets usually used for evaluation in the literature.
A considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines.
This can have an impact on the absolute and relative number of predictive, uninformative, and correlated features compared to academic datasets.
arXiv Detail & Related papers (2024-06-27T17:55:31Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Squeezing Lemons with Hammers: An Evaluation of AutoML and Tabular Deep Learning for Data-Scarce Classification Applications [2.663744975320783]
We find that L2-regularized logistic regression performs similar to state-of-the-art automated machine learning (AutoML) frameworks.
We recommend to consider logistic regression as the first choice for data-scarce applications.
arXiv Detail & Related papers (2024-05-13T11:43:38Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - STUNT: Few-shot Tabular Learning with Self-generated Tasks from
Unlabeled Tables [64.0903766169603]
We propose a framework for few-shot semi-supervised learning, coined Self-generated Tasks from UNlabeled Tables (STUNT)
Our key idea is to self-generate diverse few-shot tasks by treating randomly chosen columns as a target label.
We then employ a meta-learning scheme to learn generalizable knowledge with the constructed tasks.
arXiv Detail & Related papers (2023-03-02T02:37:54Z) - Machine Learning Capability: A standardized metric using case difficulty
with applications to individualized deployment of supervised machine learning [2.2060666847121864]
Model evaluation is a critical component in supervised machine learning classification analyses.
Items Response Theory (IRT) and Computer Adaptive Testing (CAT) with machine learning can benchmark datasets independent of the end-classification results.
arXiv Detail & Related papers (2023-02-09T00:38:42Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.