論文の概要: Interpreting and Improving Large Language Models in Arithmetic Calculation
- arxiv url: http://arxiv.org/abs/2409.01659v1
- Date: Tue, 3 Sep 2024 07:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:43:06.855343
- Title: Interpreting and Improving Large Language Models in Arithmetic Calculation
- Title(参考訳): 算術計算における大規模言語モデルの解釈と改善
- Authors: Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming Cheung, Xinmei Tian, Xu Shen, Jieping Ye,
- Abstract要約: 大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
- 参考スコア(独自算出の注目度): 72.19753146621429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多くのアプリケーションにおいて顕著なポテンシャルを示し、数学的計算のような複雑な推論タスクに取り組む能力を示す。
しかし、最も単純な算術計算であっても、LLMの背後にある本質的なメカニズムは謎のままであり、信頼性を確保することは困難である。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
総合的な実験を通して、LLMは、計算過程においてオペランドや演算子に焦点を合わせる上で重要な役割を担っている注意ヘッドのごく一部(5%)を頻繁に含んでいることが判明した。
その後、これらのオペランドからの情報は多層パーセプトロン(MLP)を通して処理され、徐々に最終解へと導かれる。
これらのピボットヘッド/MLPは、特定のデータセットで特定されているが、異なるデータセットと異なるタスクの間で転送可能性を示す。
この知見から,LLMの計算性能を高めるために,これらの重要なヘッド/MLPを選択的に微調整する可能性について検討した。
このような正確なチューニングは、非数学的なタスクのパフォーマンスを損なうことなく、数学の卓越した向上をもたらすことを実証的に見出した。
我々の研究は、LLMに固有の算術計算能力に関する予備的な調査として役立ち、より複雑な数学的タスクを明らかにするための確かな基礎を築き上げている。
関連論文リスト
- Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures [3.181878085746691]
大型言語モデル (LLM) は顕著な数学的能力を示しており、主にチェーン・オブ・シント (CoT) のプロンプトによって駆動されている。
本稿では,emphCommutativity やemphIdentity などの代数的構造を捉えることによって,LLM が算術を学習することを提案する。
この結果から,代数的構造を活用することでLLMの算術的能力が向上し,算術的性能向上への洞察が得られた。
論文 参考訳(メタデータ) (2024-11-25T10:23:11Z) - Can a Large Language Model Learn Matrix Functions In Context? [3.7478782183628634]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を通じて複雑なタスクを解く能力を実証した。
本稿では,LLMの非線形数値計算能力について検討し,特異値分解関数に着目した。
論文 参考訳(メタデータ) (2024-11-24T00:33:43Z) - Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - How Numerical Precision Affects Mathematical Reasoning Capabilities of LLMs [69.55103380185612]
本稿では,変圧器を用いた大規模言語モデルの数学的タスクにおける有効性に影響を与える重要な要因として,数値的精度を同定する。
その結果,数値精度の低いトランスフォーマーでは,繰り返し加算や整数乗算などの算術的なタスクに対処できないことがわかった。
対照的に、標準的な数値精度のトランスフォーマーは、モデルサイズを大幅に小さくすることで、これらのタスクを効率的に処理することができる。
論文 参考訳(メタデータ) (2024-10-17T17:59:35Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。