論文の概要: Efficiently Expanding Receptive Fields: Local Split Attention and Parallel Aggregation for Enhanced Large-scale Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2409.01662v1
- Date: Tue, 3 Sep 2024 07:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:30:20.839188
- Title: Efficiently Expanding Receptive Fields: Local Split Attention and Parallel Aggregation for Enhanced Large-scale Point Cloud Semantic Segmentation
- Title(参考訳): 知覚場を効率的に拡張する: 大規模クラウドセマンティックセマンティックセマンティックセグメンテーションのための局所スプリット注意と並列アグリゲーション
- Authors: Haodong Wang, Chongyu Wang, Yinghui Quan, Di Wang,
- Abstract要約: 本研究では,複数の局所分割操作を通じて受容領域を効果的に拡張するLSAP機構を提案する。
本研究では,大規模クラウドセマンティックセマンティックセグメンテーションのための新しいフレームワークLSNetを提案する。
LSNetは3つのベンチマークデータセット上の最先端セマンティックセグメンテーションネットワークよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 7.199090922071512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Expanding the receptive field in a deep learning model for large-scale 3D point cloud segmentation is an effective technique for capturing rich contextual information, which consequently enhances the network's ability to learn meaningful features. However, this often leads to increased computational complexity and risk of overfitting, challenging the efficiency and effectiveness of the learning paradigm. To address these limitations, we propose the Local Split Attention Pooling (LSAP) mechanism to effectively expand the receptive field through a series of local split operations, thus facilitating the acquisition of broader contextual knowledge. Concurrently, it optimizes the computational workload associated with attention-pooling layers to ensure a more streamlined processing workflow. Based on LSAP, a Parallel Aggregation Enhancement (PAE) module is introduced to enable parallel processing of data using both 2D and 3D neighboring information to further enhance contextual representations within the network. In light of the aforementioned designs, we put forth a novel framework, designated as LSNet, for large-scale point cloud semantic segmentation. Extensive evaluations demonstrated the efficacy of seamlessly integrating the proposed PAE module into existing frameworks, yielding significant improvements in mean intersection over union (mIoU) metrics, with a notable increase of up to 11%. Furthermore, LSNet demonstrated superior performance compared to state-of-the-art semantic segmentation networks on three benchmark datasets, including S3DIS, Toronto3D, and SensatUrban. It is noteworthy that our method achieved a substantial speedup of approximately 38.8% compared to those employing similar-sized receptive fields, which serves to highlight both its computational efficiency and practical utility in real-world large-scale scenes.
- Abstract(参考訳): 大規模3Dポイントクラウドセグメンテーションのためのディープラーニングモデルにおける受容領域の拡大は、リッチなコンテキスト情報をキャプチャする効果的な手法であり、それによってネットワークが有意義な特徴を学習する能力を高める。
しかし、これはしばしば計算の複雑さと過度に適合するリスクを増大させ、学習パラダイムの効率性と有効性に挑戦する。
これらの制約に対処するため、我々は、局所的な分割操作を通じて受容領域を効果的に拡張するローカルスプリット注意プール(LSAP)機構を提案し、より広い文脈知識の獲得を容易にする。
同時に、アテンションプールレイヤーに関連する計算負荷を最適化し、より合理化された処理ワークフローを保証する。
LSAPに基づいて、並列集約拡張(PAE)モジュールを導入し、2Dおよび3D隣り合う情報を用いてデータの並列処理を可能にし、ネットワーク内のコンテキスト表現をさらに強化する。
上記の設計を踏まえ,大規模クラウドセマンティックセマンティックセグメンテーションのための新しいフレームワークLSNetを考案した。
大規模な評価では、提案されたPAEモジュールを既存のフレームワークにシームレスに統合する効果が示され、mIoU(Universal over Union)メトリクスの平均交叉が大幅に改善され、最大11%の顕著な増加が見られた。
さらにLSNetは、S3DIS、Tronto3D、SensatUrbanを含む3つのベンチマークデータセットの最先端セマンティックセグメンテーションネットワークよりも優れたパフォーマンスを示した。
提案手法は, 実世界の大規模シーンにおいて, 計算効率と実用性を両立させるため, ほぼ38.8%の高速化を実現した。
関連論文リスト
- ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
本稿では、簡単な構造で大幅な性能向上を実現するための効率的な局所注意法(ELA)を提案する。
これらの課題を克服するため、我々は1次元畳み込みとグループ正規化機能強化技術の導入を提案する。
ELAはResNet、MobileNet、DeepLabといったディープCNNネットワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-02T08:06:18Z) - SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks [0.0]
本研究では,一意に効率的な残差ネットワークであるEfficient-ResNetを用いたエンコーダデコーダアーキテクチャを提案する。
アテンションブーティングゲート(AbG)とアテンションブーイングモジュール(AbM)は、グローバルコンテキストの出力の等価サイズで同変および特徴に基づく意味情報を融合することを目的として展開される。
我々のネットワークは、挑戦的なCamVidとCityscapesのデータセットでテストされており、提案手法により、残余ネットワークに対する大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-01-28T19:58:19Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
イベントカメラは、非同期イベントストリームを生成するためにピクセルごとの強度の変化を検出する。
リアルタイム自律システムにおいて、正確なセマンティックマップ検索のための大きな可能性を秘めている。
イベントセグメンテーションの既存の実装は、サブベースのパフォーマンスに悩まされている。
本研究では,ハイブリット・エンド・エンド・エンドの学習フレームワークHALSIEを提案する。
論文 参考訳(メタデータ) (2022-11-19T17:09:50Z) - LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via
Local Adaptive and Comprehensive VLAD [13.907586081922345]
本稿では,大規模クラウドセマンティックセグメンテーションのための,LACV-Netと呼ばれるエンドツーエンドのディープニューラルネットワークを提案する。
提案するネットワークは,1) 局所適応的特徴拡張モジュール(LAFA) を適応的に学習し,局所的文脈を拡張させる,2) 局所的特徴を多層,マルチスケール,マルチ解像度で融合させて包括的グローバル記述ベクトルを表現する,包括的VLADモジュール,3) LAFAモジュールからの適応的重みを制限してセグメント境界を効果的に最適化する集約損失関数を含む。
論文 参考訳(メタデータ) (2022-10-12T02:11:00Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - EDNet: Efficient Disparity Estimation with Cost Volume Combination and
Attention-based Spatial Residual [17.638034176859932]
既存の分散度推定は、主に4D結合ボリュームを活用し、分散回帰のための非常に深い3D畳み込みニューラルネットワーク(CNN)を構築する。
本稿では,EDNetというネットワークを効率よく分散推定する手法を提案する。
Scene FlowとKITTIデータセットの実験は、EDNetが以前の3D CNNベースの作業より優れていることを示している。
論文 参考訳(メタデータ) (2020-10-26T04:49:44Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。