論文の概要: Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network
- arxiv url: http://arxiv.org/abs/2409.01731v2
- Date: Wed, 4 Sep 2024 02:23:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:16:32.308038
- Title: Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network
- Title(参考訳): グラフアテンションネットワークを用いた多重モードを用いた重畳アンサンブルに基づく変異原性予測モデル
- Authors: Tanya Liyaqat, Tanvir Ahmad, Mohammad Kashif, Chandni Saxena,
- Abstract要約: 変異原性は、様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
本研究では,新しいアンサンブルに基づく変異原性予測モデルを提案する。
- 参考スコア(独自算出の注目度): 0.9736758288065405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences, including the development of cancer. Earlier identification of mutagenic compounds in the drug development process is therefore crucial for preventing the progression of unsafe candidates and reducing development costs. While computational techniques, especially machine learning models have become increasingly prevalent for this endpoint, they rely on a single modality. In this work, we introduce a novel stacked ensemble based mutagenicity prediction model which incorporate multiple modalities such as simplified molecular input line entry system (SMILES) and molecular graph. These modalities capture diverse information about molecules such as substructural, physicochemical, geometrical and topological. To derive substructural, geometrical and physicochemical information, we use SMILES, while topological information is extracted through a graph attention network (GAT) via molecular graph. Our model uses a stacked ensemble of machine learning classifiers to make predictions using these multiple features. We employ the explainable artificial intelligence (XAI) technique SHAP (Shapley Additive Explanations) to determine the significance of each classifier and the most relevant features in the prediction. We demonstrate that our method surpasses SOTA methods on two standard datasets across various metrics. Notably, we achieve an area under the curve of 95.21\% on the Hansen benchmark dataset, affirming the efficacy of our method in predicting mutagenicity. We believe that this research will captivate the interest of both clinicians and computational biologists engaged in translational research.
- Abstract(参考訳): 変異原性は、癌の発生を含む様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
薬物開発プロセスにおける変異原性化合物の早期同定は、安全でない候補の進行を防ぎ、開発コストを削減するために重要である。
計算技術、特に機械学習モデルは、このエンドポイントでますます普及しているが、それらは単一のモダリティに依存している。
本研究では,分子インプットライン入力システム (SMILES) や分子グラフなどの複数のモードを組み込んだ,組立アンサンブルに基づく変異原性予測モデルを提案する。
これらのモダリティは、構造、物理化学的、幾何学的、トポロジカルといった分子についての多様な情報を取得する。
分子グラフを用いたグラフアテンションネットワーク(GAT)を通して位相情報を抽出しながら,構造的,幾何学的,物理化学的情報を導出する。
我々のモデルは、これらの複数の特徴を用いて予測を行うために、機械学習分類器の積み重ねられたアンサンブルを使用する。
我々は、各分類器の意義と予測における最も重要な特徴を決定するために、説明可能な人工知能(XAI)技術SHAP(Shapley Additive Explanations)を用いる。
提案手法は,2つの標準データセット上でのSOTA法を超越していることを示す。
特に,ハンセンベンチマークデータセットの95.21\%の曲線下領域を達成し,変異原性を予測する手法の有効性を確認した。
本研究は,翻訳研究に携わる臨床医と計算生物学者の双方の関心を惹きつけるものと信じている。
関連論文リスト
- Data-Error Scaling in Machine Learning on Natural Discrete Combinatorial Mutation-prone Sets: Case Studies on Peptides and Small Molecules [0.0]
本研究では機械学習(ML)モデルにおけるデータエラースケーリングの傾向について検討する。
典型的なデータエラースケーリングとは対照的に,学習中に不連続な単調相転移がみられた。
学習曲線を正規化するための代替戦略とミュータントに基づくシャッフルの概念を提案する。
論文 参考訳(メタデータ) (2024-05-08T16:04:50Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL [1.840390797252648]
ディープラーニングは、シリコン内予測と生体内観測のギャップを埋めることのできる強力なツールとして、ますます認識されている。
タンパク質複合体中のアミノ酸置換物からの結合親和性変化を予測するための新しいグラフニューラルネットワークアーキテクチャであるeGRALを提案する。
eGralは、タンパク質の大規模言語モデルから抽出された特徴のおかげで、残基、原子スケール、進化スケールを利用する。
論文 参考訳(メタデータ) (2024-05-03T10:33:19Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
深層学習に基づく分子特性予測は、従来の手法の資源集約性に対する解決策として登場した。
本稿では,分子特性予測のための新しいマルチモーダル表現学習モデルSGGRLを提案する。
モダリティ間の整合性を確保するため、SGGRLは異なる分子の類似性を最小化しながら同じ分子の表現の類似性を最大化するように訓練される。
論文 参考訳(メタデータ) (2024-01-07T02:18:00Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。