論文の概要: Decoding finger velocity from cortical spike trains with recurrent spiking neural networks
- arxiv url: http://arxiv.org/abs/2409.01762v1
- Date: Tue, 3 Sep 2024 10:15:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:01:57.486730
- Title: Decoding finger velocity from cortical spike trains with recurrent spiking neural networks
- Title(参考訳): 繰り返しスパイクニューラルネットを用いた皮質スパイク列車の指速度の復号
- Authors: Tengjun Liu, Julia Gygax, Julian Rossbroich, Yansong Chua, Shaomin Zhang, Friedemann Zenke,
- Abstract要約: 侵襲的脳-機械インタフェース(BMI)は運動障害患者の生活の質を著しく向上させる。
BMIは信頼性の高い復号化性能を提供しながら、厳格なレイテンシとエネルギー制約を満たす必要がある。
2匹のマカクザルの皮質スパイク列から指の速度を復号するためにRSNNを訓練した。
- 参考スコア(独自算出の注目度): 6.404492073110551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invasive cortical brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients. Nonetheless, externally mounted pedestals pose an infection risk, which calls for fully implanted systems. Such systems, however, must meet strict latency and energy constraints while providing reliable decoding performance. While recurrent spiking neural networks (RSNNs) are ideally suited for ultra-low-power, low-latency processing on neuromorphic hardware, it is unclear whether they meet the above requirements. To address this question, we trained RSNNs to decode finger velocity from cortical spike trains (CSTs) of two macaque monkeys. First, we found that a large RSNN model outperformed existing feedforward spiking neural networks (SNNs) and artificial neural networks (ANNs) in terms of their decoding accuracy. We next developed a tiny RSNN with a smaller memory footprint, low firing rates, and sparse connectivity. Despite its reduced computational requirements, the resulting model performed substantially better than existing SNN and ANN decoders. Our results thus demonstrate that RSNNs offer competitive CST decoding performance under tight resource constraints and are promising candidates for fully implanted ultra-low-power BMIs with the potential to revolutionize patient care.
- Abstract(参考訳): 侵襲性皮質脳-機械インタフェース(BMI)は運動障害患者の生活の質を著しく向上させる。
それにもかかわらず、外部に装着された台座は感染の危険を冒し、完全に移植されたシステムを要求する。
しかし、そのようなシステムは信頼性の高い復号性能を提供しながら、厳格なレイテンシとエネルギー制約を満たす必要がある。
繰り返しスパイクニューラルネットワーク(RSNN)は、ニューロモルフィックハードウェア上での超低消費電力低レイテンシ処理に理想的に適しているが、これらが上記の要件を満たすかどうかは不明である。
この問題に対処するために、我々は2匹のマカクザルの皮質スパイクトレイン(CST)から指の速度を復号するためにRSNNを訓練した。
まず、大規模なRSNNモデルは、復号精度で既存のフィードフォワードスパイクニューラルネットワーク(SNN)と人工ニューラルネットワーク(ANN)より優れていたことを発見した。
次に、メモリフットプリントが小さく、発射速度が低く、接続性が疎い小さなRSNNを開発しました。
計算能力の低下にもかかわらず、結果のモデルは既存のSNNやANNデコーダよりも大幅に向上した。
以上の結果から,RSNNは厳しい資源制約下での競争力のあるCSTデコード性能を提供し,患者医療に革命をもたらす可能性を秘めている超低消費電力BMIの候補となる可能性が示唆された。
関連論文リスト
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - Accelerating spiking neural network training [1.6114012813668934]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、脳内の活動電位にインスパイアされた人工ネットワークの一種である。
本稿では,全ての逐次計算を排除し,ベクトル化された演算にのみ依存する単一スパイク/ニューラルオンSNNを直接訓練する手法を提案する。
提案手法は, 従来のSNNと比較して, 95.68 %以上のスパイク数削減を達成し, ニューロモルフィックコンピュータ上でのエネルギー要求を著しく低減する。
論文 参考訳(メタデータ) (2022-05-30T17:48:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
スパイクニューラルネットワーク(SNN)は離散スパイクを通して情報を伝達し、空間時間情報を処理するのによく機能する。
適応型自己フィードバックと平衡興奮性および抑制性ニューロン(BackEISNN)を用いた深部スパイクニューラルネットワークを提案する。
MNIST、FashionMNIST、N-MNISTのデータセットに対して、我々のモデルは最先端の性能を達成した。
論文 参考訳(メタデータ) (2021-05-27T08:38:31Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMSは、モーションセグメンテーションの大規模な問題に対する最初のディープエンコーダデコーダSNNアーキテクチャである。
textitSpikeMSは,テキストインクリメンタルな予測や,より少ない量のテストデータからの予測を行うことができることを示す。
論文 参考訳(メタデータ) (2021-05-13T21:34:55Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。