Nonstabilizerness in U(1) lattice gauge theory
- URL: http://arxiv.org/abs/2409.01789v2
- Date: Mon, 10 Feb 2025 13:43:10 GMT
- Title: Nonstabilizerness in U(1) lattice gauge theory
- Authors: Pedro R. Nicácio Falcão, Poetri Sonya Tarabunga, Martina Frau, Emanuele Tirrito, Jakub Zakrzewski, Marcello Dalmonte,
- Abstract summary: Nonstabilizerness is a fundamental quantum resource that quantifies state complexity within the framework of quantum computing.<n>We show how nonstabilizerness is always extensive with volume, and has no direct relation to the presence of critical points.<n>Our results indicate that error-corrected simulations of lattice gauge theories close to the limit continuum have similar computational costs to those at finite correlation length.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a thorough investigation of nonstabilizerness - a fundamental quantum resource that quantifies state complexity within the framework of quantum computing - in a one-dimensional U(1) lattice gauge theory. We show how nonstabilizerness is always extensive with volume, and has no direct relation to the presence of critical points. However, its derivatives typically display discontinuities across the latter: This indicates that nonstabilizerness is strongly sensitive to criticality, but in a manner that is very different from entanglement (that, typically, is maximal at the critical point). Our results indicate that error-corrected simulations of lattice gauge theories close to the continuum limit have similar computational costs to those at finite correlation length and provide rigorous lower bounds for quantum resources of such quantum computations.
Related papers
- Asymptotic Exceptional Steady States in Dissipative Dynamics [0.0]
We show how a system mayally approach the forbidden scenario of an exceptional steady state in the thermodynamic limit.
Treating the strength $W$ of quantum jumps as a parameter, we show that exceptional steady states at the physical value $W=1$ may be understood as a critical pointing the onset of dynamical instability.
arXiv Detail & Related papers (2025-04-03T18:00:02Z) - Non-stabilizerness in kinetically-constrained Rydberg atom arrays [0.11060425537315084]
We show that Rydberg atom arrays provide a natural reservoir of non-stabilizerness that extends beyond single qubits.
We explain the origin of Rydberg nonstabilizerness via a quantum circuit decomposition of the wave function.
arXiv Detail & Related papers (2024-06-20T14:17:34Z) - Assessing the query complexity limits of quantum phase estimation using symmetry aware spectral bounds [0.0]
computational cost of quantum algorithms for physics and chemistry is closely linked to the spectrum of the Hamiltonian.
We introduce a hierarchy of symmetry-aware spectral bounds that provide a unified understanding of the performance of quantum phase estimation algorithms.
arXiv Detail & Related papers (2024-03-07T18:38:49Z) - Structural Stability Hypothesis of Dual Unitary Quantum Chaos [0.0]
spectral correlations over small enough energy scales are described by random matrix theory.
We consider fate of this property when moving from dual-unitary to generic quantum circuits.
arXiv Detail & Related papers (2024-02-29T12:25:29Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Relative entropic uncertainty relation for scalar quantum fields [0.0]
We introduce the notion of a functional relative entropy and show that it has a meaningful field theory limit.
We show that the relation implies the multidimensional Heisenberg uncertainty relation.
arXiv Detail & Related papers (2021-07-16T11:15:07Z) - Toward Better Generalization Bounds with Locally Elastic Stability [41.7030651617752]
We argue that locally elastic stability implies tighter generalization bounds than those derived based on uniform stability.
We revisit the examples of bounded support vector machines, regularized least square regressions, and gradient descent.
arXiv Detail & Related papers (2020-10-27T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.