On the design space between molecular mechanics and machine learning force fields
- URL: http://arxiv.org/abs/2409.01931v2
- Date: Thu, 5 Sep 2024 13:10:22 GMT
- Title: On the design space between molecular mechanics and machine learning force fields
- Authors: Yuanqing Wang, Kenichiro Takaba, Michael S. Chen, Marcus Wieder, Yuzhi Xu, Tong Zhu, John Z. H. Zhang, Arnav Nagle, Kuang Yu, Xinyan Wang, Daniel J. Cole, Joshua A. Rackers, Kyunghyun Cho, Joe G. Greener, Peter Eastman, Stefano Martiniani, Mark E. Tuckerman,
- Abstract summary: Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction.
We argue that the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed.
We discuss the desired properties and challenges now faced by the force field development community.
- Score: 25.315758265685293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like.
Related papers
- Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage [16.745564099126575]
We develop ByteFF, an Amber-compatible force field for drug-like molecules.
Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space.
arXiv Detail & Related papers (2024-08-23T03:37:06Z) - Grappa -- A Machine Learned Molecular Mechanics Force Field [1.3499500088995464]
Grappa is a machine learning framework to predict molecular parameters from the molecular graph.
It predicts energies and forces of small molecules, peptides, RNA and radicals at state-of-the-art molecular mechanics accuracy.
Our force field sets the stage for biomolecular simulations closer to chemical accuracy, but with the same computational cost as established protein force fields.
arXiv Detail & Related papers (2024-03-25T15:11:15Z) - Overcoming the Barrier of Orbital-Free Density Functional Theory for
Molecular Systems Using Deep Learning [46.08497356503155]
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT.
Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model.
arXiv Detail & Related papers (2023-09-28T16:33:36Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
Nonlocal Effects [1.5845117761091052]
Machine-learned force fields (ML-FFs) have gained increasing popularity in the field of computational chemistry.
This work introduces SpookyNet, a deep neural network for constructing ML-FFs with explicit treatment of electronic degrees of freedom and quantum nonlocality.
SpookyNet improves upon the current state-of-the-art (or achieves similar performance) on popular quantum chemistry data sets.
arXiv Detail & Related papers (2021-05-01T17:06:40Z) - Machine Learning Force Fields [54.48599172620472]
Machine Learning (ML) has enabled numerous advances in computational chemistry.
One of the most promising applications is the construction of ML-based force fields (FFs)
This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them.
arXiv Detail & Related papers (2020-10-14T13:14:14Z) - End-to-End Differentiable Molecular Mechanics Force Field Construction [0.5269923665485903]
We propose an alternative approach that uses graph neural networks to perceive chemical environments.
The entire process is modular and end-to-end differentiable with respect to model parameters.
We show that this approach is not only sufficiently to reproduce legacy atom types, but that it can learn to accurately reproduce and extend existing molecular mechanics force fields.
arXiv Detail & Related papers (2020-10-02T20:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.