UNSURE: Unknown Noise level Stein's Unbiased Risk Estimator
- URL: http://arxiv.org/abs/2409.01985v2
- Date: Mon, 30 Sep 2024 09:33:19 GMT
- Title: UNSURE: Unknown Noise level Stein's Unbiased Risk Estimator
- Authors: Julián Tachella, Mike Davies, Laurent Jacques,
- Abstract summary: Many self-supervised learning methods for image reconstruction have been proposed that can learn from noisy data alone.
We propose a new approach based on SURE, but unlike the standard SURE, does not require knowledge about the noise level.
- Score: 12.289101615816595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many self-supervised learning methods for image reconstruction have been proposed that can learn from noisy data alone, bypassing the need for ground-truth references. Most existing methods cluster around two classes: i) Noise2Self and similar cross-validation methods that require very mild knowledge about the noise distribution, and ii) Stein's Unbiased Risk Estimator (SURE) and similar approaches that assume full knowledge of the distribution. The first class of methods is often suboptimal compared to supervised learning, and the second class tends to be impractical, as the noise level is often unknown in real-world applications. In this paper, we provide a theoretical framework that characterizes this expressivity-robustness trade-off and propose a new approach based on SURE, but unlike the standard SURE, does not require knowledge about the noise level. Throughout a series of experiments, we show that the proposed estimator outperforms other existing self-supervised methods on various imaging inverse problems
Related papers
- Trusted Multi-view Learning with Label Noise [17.458306450909316]
Multi-view learning methods often focus on improving decision accuracy while neglecting the decision uncertainty.
We propose a trusted multi-view noise refining method to solve this problem.
We empirically compare TMNR with state-of-the-art trusted multi-view learning and label noise learning baselines on 5 publicly available datasets.
arXiv Detail & Related papers (2024-04-18T06:47:30Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
We propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously.
We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
arXiv Detail & Related papers (2021-02-04T05:09:18Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
We show that robust imitation learning can be achieved by optimizing a classification risk with a symmetric loss.
We propose a new imitation learning method that effectively combines pseudo-labeling with co-training.
Experimental results on continuous-control benchmarks show that our method is more robust compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-20T10:41:37Z) - Ground Truth Free Denoising by Optimal Transport [2.5137859989323537]
We present a learned unsupervised denoising method for arbitrary types of data.
The training is solely based on samples of noisy data and examples of noise.
The method rests on a Wasserstein Generative Adversarial Network setting.
arXiv Detail & Related papers (2020-07-03T09:39:25Z) - Confidence Scores Make Instance-dependent Label-noise Learning Possible [129.84497190791103]
In learning with noisy labels, for every instance, its label can randomly walk to other classes following a transition distribution which is named a noise model.
We introduce confidence-scored instance-dependent noise (CSIDN), where each instance-label pair is equipped with a confidence score.
We find with the help of confidence scores, the transition distribution of each instance can be approximately estimated.
arXiv Detail & Related papers (2020-01-11T16:15:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.