Robust Fitting on a Gate Quantum Computer
- URL: http://arxiv.org/abs/2409.02006v1
- Date: Tue, 3 Sep 2024 15:54:20 GMT
- Title: Robust Fitting on a Gate Quantum Computer
- Authors: Frances Fengyi Yang, Michele Sasdelli, Tat-Jun Chin,
- Abstract summary: We propose a quantum circuit to solve the $ell_infty$ feasibility test in the 1D case, which allows to demonstrate for the first time quantum robust fitting on a real gate quantum computer.
We also show how 1D Boolean influences can be accumulated to compute influences for higher-dimensional non-linear models.
- Score: 22.0076458961442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gate quantum computers generate significant interest due to their potential to solve certain difficult problems such as prime factorization in polynomial time. Computer vision researchers have long been attracted to the power of quantum computers. Robust fitting, which is fundamentally important to many computer vision pipelines, has recently been shown to be amenable to gate quantum computing. The previous proposed solution was to compute Boolean influence as a measure of outlyingness using the Bernstein-Vazirani quantum circuit. However, the method assumed a quantum implementation of an $\ell_\infty$ feasibility test, which has not been demonstrated. In this paper, we take a big stride towards quantum robust fitting: we propose a quantum circuit to solve the $\ell_\infty$ feasibility test in the 1D case, which allows to demonstrate for the first time quantum robust fitting on a real gate quantum computer, the IonQ Aria. We also show how 1D Boolean influences can be accumulated to compute Boolean influences for higher-dimensional non-linear models, which we experimentally validate on real benchmark datasets.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Efficient Quantum Circuit Encoding of Object Information in 2D Ray Casting [7.262444673139455]
Quantum computing holds the potential to solve problems that are practically unsolvable by classical computers.
We aim to harness this potential to enhance ray casting, a pivotal technique in computer graphics for simplifying the rendering of 3D objects.
arXiv Detail & Related papers (2024-05-25T08:54:28Z) - Direct Probe of Topology and Geometry of Quantum States on IBM Q [2.7801206308522417]
We show that a density matrix form of the quantum geometric tensor (QGT) can be explicitly re-constructed from Pauli operator measurements on a quantum circuit.
We propose two algorithms, suitable for IBM quantum computers, to directly probe QGT.
Explicit results obtained from IBM Q a Chern insulator model are presented and analysed.
arXiv Detail & Related papers (2024-03-21T09:18:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
We show that noisy quantum devices with a circuit depth of more than $O(log n)$ provide no advantages in any quantum algorithms.
We also study the maximal entanglement that noisy quantum devices can produce under one- and two-dimensional qubit connections.
arXiv Detail & Related papers (2023-06-05T12:29:55Z) - Schr\"odinger-Heisenberg Variational Quantum Algorithms [1.9887498823918806]
Recent breakthroughs have opened the possibility to intermediate-scale quantum computing with tens to hundreds of qubits.
The extremely high accuracy needed to surpass classical computers poses a critical demand to the circuit depth.
Here, we propose a paradigm of Schr"odinger-Heisenberg variational quantum algorithms to resolve this problem.
arXiv Detail & Related papers (2021-12-15T04:53:01Z) - A trapped ion quantum computer with robust entangling gates and quantum
coherent feedback [0.0]
Chains of ions held in a linear Paul trap are a promising platform for constructing such quantum computers.
We report on the construction of a small, five-qubit, universal quantum computer using $88textSr+$ ions in an RF trap.
arXiv Detail & Related papers (2021-11-07T19:17:23Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.