論文の概要: Your Data, My Model: Learning Who Really Helps in Federated Learning
- arxiv url: http://arxiv.org/abs/2409.02064v3
- Date: Wed, 28 May 2025 20:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.297345
- Title: Your Data, My Model: Learning Who Really Helps in Federated Learning
- Title(参考訳): あなたのデータと私のモデル: フェデレーション学習に本当に役立つ人を学ぶ
- Authors: Shamsiiat Abdurakhmanova, Amirhossein Mohammadi, Yasmin SarcheshmehPour, Alexander Jung,
- Abstract要約: 重要な課題は、どのピアがコラボレーションに最も有益かを決定することです。
本稿では,関係する協力者を選択するためのシンプルかつプライバシー保護手法を提案する。
我々のアプローチは、個人化されたフェデレーション学習のためのモデルに依存しない、データ駆動のピア選択を可能にする。
- 参考スコア(独自算出の注目度): 47.0304843350031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many important machine learning applications involve networks of devices-such as wearables or smartphones-that generate local data and train personalized models. A key challenge is determining which peers are most beneficial for collaboration. We propose a simple and privacy-preserving method to select relevant collaborators by evaluating how much a model improves after a single gradient step using another devices data-without sharing raw data. This method naturally extends to non-parametric models by replacing the gradient step with a non-parametric generalization. Our approach enables model-agnostic, data-driven peer selection for personalized federated learning (PersFL).
- Abstract(参考訳): 多くの重要な機械学習アプリケーションは、ローカルデータを生成し、パーソナライズされたモデルをトレーニングするウェアラブルやスマートフォンなどのデバイスのネットワークを含んでいる。
重要な課題は、どのピアがコラボレーションに最も有益かを決定することです。
そこで,本研究では,データ共有を伴わずに,単一の勾配ステップでモデルがどれだけ改善するかを評価することによって,関係する協力者を選択するためのシンプルでプライバシ保護手法を提案する。
この方法は、勾配ステップを非パラメトリック一般化に置き換えることで、非パラメトリックモデルに自然に拡張する。
提案手法は,パーソナライズされたフェデレーション学習(PersFL)のための,モデルに依存しない,データ駆動のピア選択を可能にする。
関連論文リスト
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
大規模言語モデル(LLM)は多様なタスクに使われてきたが、特徴と対象変数の正確な相関は捉えていない。
そこで本研究では,LLMに基づく3つの重要な改良を加えて,実データの特徴クラス相関を正しく把握する手法を提案する。
実験の結果,本手法は下流タスクにおいて,20個のデータセット上で10個のSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-29T04:14:32Z) - Generative Dataset Distillation: Balancing Global Structure and Local Details [49.20086587208214]
グローバルな構造と局所的な詳細のバランスを考慮に入れた新しいデータセット蒸留法を提案する。
本手法では, 条件付き生成逆数ネットワークを用いて蒸留したデータセットを生成する。
論文 参考訳(メタデータ) (2024-04-26T23:46:10Z) - Few-Shot Object Detection via Synthetic Features with Optimal Transport [28.072187044345107]
我々は,新しいクラスのための合成データを生成するために,ジェネレータを訓練する新しい手法を提案する。
私たちの包括的な目標は、ベースデータセットのデータバリエーションをキャプチャするジェネレータをトレーニングすることにあります。
次に、学習したジェネレータを用いて合成データを生成することにより、キャプチャしたバリエーションを新しいクラスに変換する。
論文 参考訳(メタデータ) (2023-08-29T03:54:26Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
ディープラーニングモデルはトレーニングに大量のデータを必要とすることが多く、結果としてコストが増大する。
実世界の画像データの冗長性を調べるために,シナプスインテリジェンスと勾配ノルムに基づく2つのデータ評価指標を提案する。
オンラインおよびオフラインのデータ選択アルゴリズムは、検査されたデータ値に基づいてクラスタリングとグループ化によって提案される。
論文 参考訳(メタデータ) (2023-06-25T03:31:05Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Achieving Representative Data via Convex Hull Feasibility Sampling
Algorithms [35.29582673348303]
トレーニングデータのバイアスをサンプリングすることは、機械学習システムにおけるアルゴリズムバイアスの主要な原因である。
得られたデータから代表的データセットを収集できるかどうかを高信頼で判断するために,適応的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T23:14:05Z) - Uniform-in-Phase-Space Data Selection with Iterative Normalizing Flows [0.0]
データの位相空間を均一に分散するようにデータポイントを選択する戦略が提案されている。
データセットの小さなサブセットのみを使用して確率マップを構築する場合、レアデータポイントの確率を正確に推定するために反復法が用いられる。
提案フレームワークは、豊富なデータが利用可能であれば、データ効率のよい機械学習を可能にするための実行可能な経路として実証されている。
論文 参考訳(メタデータ) (2021-12-28T20:06:28Z) - A Single Example Can Improve Zero-Shot Data Generation [7.237231992155901]
意図分類のサブタスクは、実験と評価のために広範囲で柔軟なデータセットを必要とする。
本稿では,データセットの収集にテキスト生成手法を提案する。
タスク指向発話を生成するための2つのアプローチについて検討する。
論文 参考訳(メタデータ) (2021-08-16T09:43:26Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。