論文の概要: Vertical Federated Unlearning via Backdoor Certification
- arxiv url: http://arxiv.org/abs/2412.11476v1
- Date: Mon, 16 Dec 2024 06:40:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:56.368646
- Title: Vertical Federated Unlearning via Backdoor Certification
- Title(参考訳): バックドア認証による垂直的フェデレーション・アンラーニング
- Authors: Mengde Han, Tianqing Zhu, Lefeng Zhang, Huan Huo, Wanlei Zhou,
- Abstract要約: VFLは機械学習における新しいパラダイムを提供し、データプライバシを維持しながら、異なるエンティティが協力してモデルをトレーニングできるようにする。
最近のプライバシー規制では、個人が忘れられる権利を強調しており、モデルが特定のトレーニングデータを学習する能力を必要としている。
本稿では,従来のVFLに対して,特定のデータコントリビューションを抽出する目的で,典型的な学習軌跡を逆転させる機構を取り入れた革新的な修正を導入する。
- 参考スコア(独自算出の注目度): 15.042986414487922
- License:
- Abstract: Vertical Federated Learning (VFL) offers a novel paradigm in machine learning, enabling distinct entities to train models cooperatively while maintaining data privacy. This method is particularly pertinent when entities possess datasets with identical sample identifiers but diverse attributes. Recent privacy regulations emphasize an individual's \emph{right to be forgotten}, which necessitates the ability for models to unlearn specific training data. The primary challenge is to develop a mechanism to eliminate the influence of a specific client from a model without erasing all relevant data from other clients. Our research investigates the removal of a single client's contribution within the VFL framework. We introduce an innovative modification to traditional VFL by employing a mechanism that inverts the typical learning trajectory with the objective of extracting specific data contributions. This approach seeks to optimize model performance using gradient ascent, guided by a pre-defined constrained model. We also introduce a backdoor mechanism to verify the effectiveness of the unlearning procedure. Our method avoids fully accessing the initial training data and avoids storing parameter updates. Empirical evidence shows that the results align closely with those achieved by retraining from scratch. Utilizing gradient ascent, our unlearning approach addresses key challenges in VFL, laying the groundwork for future advancements in this domain. All the code and implementations related to this paper are publicly available at https://github.com/mengde-han/VFL-unlearn.
- Abstract(参考訳): Vertical Federated Learning (VFL)は、機械学習における新しいパラダイムを提供し、データプライバシを維持しながら、異なるエンティティが協力してモデルをトレーニングできるようにする。
エンティティが同一のサンプル識別子を持つが、多様な属性を持つデータセットを持つ場合、この方法は特に重要となる。
最近のプライバシー規制では、個々の‘emph{right to be forget}’を強調している。
主な課題は、関連するすべてのデータを他のクライアントから消去することなく、特定のクライアントの影響をモデルから排除するメカニズムを開発することである。
本稿では,VFLフレームワーク内での単一クライアントのコントリビューションの削除について検討する。
本稿では,従来のVFLに対して,特定のデータコントリビューションを抽出する目的で,典型的な学習軌跡を逆転させる機構を取り入れた革新的な修正を導入する。
このアプローチは、事前定義された制約付きモデルによって導かれる勾配上昇を用いたモデルパフォーマンスの最適化を目指している。
また,アンラーニング手順の有効性を検証するためのバックドア機構も導入した。
本手法は,初期訓練データへの完全アクセスを回避し,パラメータ更新の保存を回避する。
実証的な証拠は、結果がスクラッチから再トレーニングすることで達成した結果と密接に一致していることを示している。
勾配の上昇を利用して、私たちの未学習アプローチは、VFLにおける重要な課題に対処し、この領域における将来の進歩の土台を築きます。
この論文に関連するコードと実装はすべてhttps://github.com/mengde-han/VFL-unlearn.comで公開されている。
関連論文リスト
- Identify Backdoored Model in Federated Learning via Individual Unlearning [7.200910949076064]
裏口攻撃は、フェデレートラーニング(FL)の堅牢性に重大な脅威をもたらす
FLにおける悪意のあるモデルを特定するために,ローカルモデル上で個別の未学習を利用する手法であるMASAを提案する。
私たちの知る限りでは、FLの悪意あるモデルを特定するために機械学習を活用するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-11-01T21:19:47Z) - Update Selective Parameters: Federated Machine Unlearning Based on Model Explanation [46.86767774669831]
モデル説明の概念に基づく、より効率的で効率的なフェデレーション・アンラーニング・スキームを提案する。
我々は、未学習のデータに対して、すでに訓練済みのモデルの中で最も影響力のあるチャネルを選択します。
論文 参考訳(メタデータ) (2024-06-18T11:43:20Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - SecureCut: Federated Gradient Boosting Decision Trees with Efficient
Machine Unlearning [10.011146979811752]
VFL(Vertical Federated Learning)では、複数のパーティがモデルトレーニングにプライベート機能を提供している。
VFLでは、データ削除(textitmachine unlearning)は、プライバシの保証の下で、すべてのサンプルから特定の機能を削除する必要があることが多い。
我々は,スクラッチから再トレーニングを必要とせずに,テクティスタンス・アンラーニングとテクティファチュア・アンラーニングの両方を効果的に実現する,新しいグラディエント・ブースティング・決定木(GBDT)フレームワークであるmethnameを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:38:53Z) - Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
本稿では,過去のデータの一部を格納するのではなく,生成モデルを用いて過去の分布からサンプルを合成する,連邦化クラスインクリメンタルラーニングのためのフレームワークを提案する。
生成モデルは、クライアントからデータを要求することなく、各タスクの最後にデータフリーのメソッドを使用してサーバ上でトレーニングされる。
論文 参考訳(メタデータ) (2023-07-02T07:06:45Z) - Subspace based Federated Unlearning [75.90552823500633]
フェデレート・アンラーニング(FL)は、ユーザが忘れられる権利を満たすために、特定のターゲットクライアントのFLへの貢献を取り除くことを目的としている。
既存のフェデレートされた未学習アルゴリズムでは、パラメータの更新履歴をサーバに格納する必要がある。
そこで我々は,SFUと呼ばれる,単純なyet効率のサブスペースに基づくフェデレーションアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Unlearning with Knowledge Distillation [9.666514931140707]
フェデレートラーニング(FL)は、トレーニングプロセス中に各クライアントのデータプライバシを保護するように設計されている。
忘れられる権利に関する最近の法律では、FLモデルが各クライアントから学んだことを忘れる能力を持つことが不可欠である。
モデルから蓄積した履歴更新を減じることで,クライアントの貢献を解消する,新たなフェデレーション付きアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-01-24T03:56:20Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。