論文の概要: From Predictive Importance to Causality: Which Machine Learning Model Reflects Reality?
- arxiv url: http://arxiv.org/abs/2409.02130v2
- Date: Tue, 24 Sep 2024 17:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:56:04.299370
- Title: From Predictive Importance to Causality: Which Machine Learning Model Reflects Reality?
- Title(参考訳): 予測的重要性から因果関係へ:どの機械学習モデルが現実を反映しているか?
- Authors: Muhammad Arbab Arshad, Pallavi Kandanur, Saurabh Sonawani, Laiba Batool, Muhammad Umar Habib,
- Abstract要約: SHAPに基づく特徴量と因果的特徴量との間には,中程度のスピアマンランク相関が0.48であることがわかった。
この研究は、予測力と不動産評価の因果的な洞察を組み合わせた統合的なアプローチの必要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study analyzes the Ames Housing Dataset using CatBoost and LightGBM models to explore feature importance and causal relationships in housing price prediction. We examine the correlation between SHAP values and EconML predictions, achieving high accuracy in price forecasting. Our analysis reveals a moderate Spearman rank correlation of 0.48 between SHAP-based feature importance and causally significant features, highlighting the complexity of aligning predictive modeling with causal understanding in housing market analysis. Through extensive causal analysis, including heterogeneity exploration and policy tree interpretation, we provide insights into how specific features like porches impact housing prices across various scenarios. This work underscores the need for integrated approaches that combine predictive power with causal insights in real estate valuation, offering valuable guidance for stakeholders in the industry.
- Abstract(参考訳): 本研究では,Ames Housing DatasetをCatBoostとLightGBMモデルを用いて分析し,住宅価格予測における特徴的重要性と因果関係について検討する。
価格予測において,SHAP値とEconML予測との相関性を検討した。
分析の結果,SHAPに基づく特徴量と因果的特徴量との間には中程度のスピアマンランク相関が0.48であり,住宅市場分析における因果的理解と予測的モデリングの整合が複雑であることが明らかとなった。
異質性探索や政策樹の解釈を含む広範な因果分析を通じて、ポーチのような特定の特徴が住宅価格に様々なシナリオでどのように影響するかについての洞察を提供する。
この研究は、予測力と不動産評価の因果的洞察を組み合わせた統合的なアプローチの必要性を浮き彫りにし、業界利害関係者に貴重なガイダンスを提供する。
関連論文リスト
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
本稿では,特徴相関が変数重要度評価に与える影響を総合シミュレーションで検討する。
ノックオフ変数と対応する予測変数の間には相関関係は常に存在しないが、相関関係が予測変数間の特定の相関しきい値を超えて線形に増加することを証明している。
論文 参考訳(メタデータ) (2024-02-05T19:02:13Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
本研究では,グラフニューラルネットワークに基づく連続学習因子予測器を提案することにより,高周波取引(HFT)における先物価格予測の課題を解決することを目的とする。
このモデルは、マルチ価格理論とリアルタイム市場ダイナミクスを統合し、既存の手法の制限を効果的に回避する。
中国の先物市場における49の商品先物に関する実証実験は、提案されたモデルが予測精度で他の最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-03-29T08:39:36Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
多くの機械学習アプリケーションは、2つの競合する目標を達成する表現を学習する。
ミニマックスゲーム理論の定式化は、精度と不変性の基本的なトレードオフを表す。
分類と回帰の双方において,この一般的かつ重要な問題を情報論的に解析する。
論文 参考訳(メタデータ) (2020-12-19T15:24:04Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
観察データによる因果推論の鍵は、それぞれの治療タイプに関連する予測的特徴のバランスを達成することである。
近年の文献では、この目標を達成するために表現学習を探求している。
因果効果を柔軟かつスケーラブルかつ正確に推定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-23T19:06:03Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。