From Predictive Importance to Causality: Which Machine Learning Model Reflects Reality?
- URL: http://arxiv.org/abs/2409.02130v2
- Date: Tue, 24 Sep 2024 17:06:31 GMT
- Title: From Predictive Importance to Causality: Which Machine Learning Model Reflects Reality?
- Authors: Muhammad Arbab Arshad, Pallavi Kandanur, Saurabh Sonawani, Laiba Batool, Muhammad Umar Habib,
- Abstract summary: We find a moderate Spearman rank correlation of 0.48 between SHAP-based feature importance and causally significant features.
This work underscores the need for integrated approaches that combine predictive power with causal insights in real estate valuation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study analyzes the Ames Housing Dataset using CatBoost and LightGBM models to explore feature importance and causal relationships in housing price prediction. We examine the correlation between SHAP values and EconML predictions, achieving high accuracy in price forecasting. Our analysis reveals a moderate Spearman rank correlation of 0.48 between SHAP-based feature importance and causally significant features, highlighting the complexity of aligning predictive modeling with causal understanding in housing market analysis. Through extensive causal analysis, including heterogeneity exploration and policy tree interpretation, we provide insights into how specific features like porches impact housing prices across various scenarios. This work underscores the need for integrated approaches that combine predictive power with causal insights in real estate valuation, offering valuable guidance for stakeholders in the industry.
Related papers
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
We present a comprehensive simulation study investigating the impact of feature correlation on the assessment of variable importance.
While there is always no correlation between knockoff variables and its corresponding predictor variables, we prove that the correlation increases linearly beyond a certain correlation threshold between the predictor variables.
arXiv Detail & Related papers (2024-02-05T19:02:13Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
This study aims to address the challenges of futures price prediction in high-frequency trading (HFT) by proposing a continuous learning factor predictor based on graph neural networks.
The model integrates multi- pricing theories with real-time market dynamics, effectively bypassing the limitations of existing methods.
Empirical tests on 49 commodity futures in China's futures market demonstrate that the proposed model outperforms other state-of-the-art models in terms of prediction accuracy.
arXiv Detail & Related papers (2023-03-29T08:39:36Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
Many machine learning applications involve learning representations that achieve two competing goals.
Minimax game-theoretic formulation represents a fundamental tradeoff between accuracy and invariance.
We provide an information-theoretic analysis of this general and important problem under both classification and regression settings.
arXiv Detail & Related papers (2020-12-19T15:24:04Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z) - Value-driven Hindsight Modelling [68.658900923595]
Value estimation is a critical component of the reinforcement learning (RL) paradigm.
Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function.
We develop an approach for representation learning in RL that sits in between these two extremes.
This provides tractable prediction targets that are directly relevant for a task, and can thus accelerate learning the value function.
arXiv Detail & Related papers (2020-02-19T18:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.