Deep Contrastive Learning for Feature Alignment: Insights from Housing-Household Relationship Inference
- URL: http://arxiv.org/abs/2502.11205v1
- Date: Sun, 16 Feb 2025 17:06:06 GMT
- Title: Deep Contrastive Learning for Feature Alignment: Insights from Housing-Household Relationship Inference
- Authors: Xiao Qian, Shangjia Dong, Rachel Davidson,
- Abstract summary: This study develops a deep contrastive learning model to infer housing-household relationships using the American Community Survey (ACS) Public Use Microdata Sample (PUMS)
The proposed model is suitable for a class of problems where the goal is to learn joint relationships between two distinct entities without explicitly labeled ground truth data.
- Score: 0.6144680854063939
- License:
- Abstract: Housing and household characteristics are key determinants of social and economic well-being, yet our understanding of their interrelationships remains limited. This study addresses this knowledge gap by developing a deep contrastive learning (DCL) model to infer housing-household relationships using the American Community Survey (ACS) Public Use Microdata Sample (PUMS). More broadly, the proposed model is suitable for a class of problems where the goal is to learn joint relationships between two distinct entities without explicitly labeled ground truth data. Our proposed dual-encoder DCL approach leverages co-occurrence patterns in PUMS and introduces a bisect K-means clustering method to overcome the absence of ground truth labels. The dual-encoder DCL architecture is designed to handle the semantic differences between housing (building) and household (people) features while mitigating noise introduced by clustering. To validate the model, we generate a synthetic ground truth dataset and conduct comprehensive evaluations. The model further demonstrates its superior performance in capturing housing-household relationships in Delaware compared to state-of-the-art methods. A transferability test in North Carolina confirms its generalizability across diverse sociodemographic and geographic contexts. Finally, the post-hoc explainable AI analysis using SHAP values reveals that tenure status and mortgage information play a more significant role in housing-household matching than traditionally emphasized factors such as the number of persons and rooms.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Comparing Fairness of Generative Mobility Models [3.699135947901772]
This work examines the fairness of generative mobility models, addressing the often overlooked dimension of equity in model performance across geographic regions.
Predictive models built on crowd flow data are instrumental in understanding urban structures and movement patterns.
We propose a novel framework for assessing fairness by measuring utility and equity of generated traces.
arXiv Detail & Related papers (2024-11-07T06:01:12Z) - TrajPRed: Trajectory Prediction with Region-based Relation Learning [11.714283460714073]
We propose a region-based relation learning paradigm for predicting human trajectories in traffic scenes.
Social interactions are modeled by relating the temporal changes of local joint information from a global perspective.
We integrate multi-goal estimation and region-based relation learning to model the two stimuli, social interactions, and goals, in a prediction framework.
arXiv Detail & Related papers (2024-04-10T12:31:43Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation.
For heterogeneous issue, we leverage irrelevant unlabeled public data for communication.
For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation.
arXiv Detail & Related papers (2023-09-28T09:32:27Z) - Beyond Instance Discrimination: Relation-aware Contrastive
Self-supervised Learning [75.46664770669949]
We present relation-aware contrastive self-supervised learning (ReCo) to integrate instance relations.
Our ReCo consistently gains remarkable performance improvements.
arXiv Detail & Related papers (2022-11-02T03:25:28Z) - Discriminative Supervised Subspace Learning for Cross-modal Retrieval [16.035973055257642]
We propose a discriminative supervised subspace learning for cross-modal retrieval(DS2L)
Specifically, we first construct a shared semantic graph to preserve the semantic structure within each modality.
We then introduce the Hilbert-Schmidt Independence Criterion(HSIC) to preserve the consistence between feature-similarity and semantic-similarity of samples.
arXiv Detail & Related papers (2022-01-26T14:27:39Z) - Contrastive Neighborhood Alignment [81.65103777329874]
We present Contrastive Neighborhood Alignment (CNA), a manifold learning approach to maintain the topology of learned features.
The target model aims to mimic the local structure of the source representation space using a contrastive loss.
CNA is illustrated in three scenarios: manifold learning, where the model maintains the local topology of the original data in a dimension-reduced space; model distillation, where a small student model is trained to mimic a larger teacher; and legacy model update, where an older model is replaced by a more powerful one.
arXiv Detail & Related papers (2022-01-06T04:58:31Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
We propose a novel method to address two key issues: (a) Can we simultaneously learn fair disentangled representations while ensuring the utility of the learned representation for downstream tasks, and (b)Can we provide theoretical insights into when the proposed approach will be both fair and accurate.
To address the former, we propose the method FRIED, Fair Representation learning using Interpolation Enabled Disentanglement.
arXiv Detail & Related papers (2021-07-31T17:32:12Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Learning Robust Representation for Clustering through Locality
Preserving Variational Discriminative Network [16.259673823482665]
Variational Deep Embedding achieves great success in various clustering tasks.
VaDE suffers from two problems: 1) it is fragile to the input noise; 2) it ignores the locality information between the neighboring data points.
We propose a joint learning framework that improves VaDE with a robust embedding discriminator and a local structure constraint.
arXiv Detail & Related papers (2020-12-25T02:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.