Edge AI: Evaluation of Model Compression Techniques for Convolutional Neural Networks
- URL: http://arxiv.org/abs/2409.02134v1
- Date: Mon, 2 Sep 2024 11:48:19 GMT
- Title: Edge AI: Evaluation of Model Compression Techniques for Convolutional Neural Networks
- Authors: Samer Francy, Raghubir Singh,
- Abstract summary: This work evaluates the compression techniques on ConvNeXt models in image classification tasks using the CIFAR-10 dataset.
Results show significant reductions in model size, with up to 75% reduction achieved using structured pruning techniques.
Dynamic quantization achieves a reduction of up to 95% in the number of parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work evaluates the compression techniques on ConvNeXt models in image classification tasks using the CIFAR-10 dataset. Structured pruning, unstructured pruning, and dynamic quantization methods are evaluated to reduce model size and computational complexity while maintaining accuracy. The experiments, conducted on cloud-based platforms and edge device, assess the performance of these techniques. Results show significant reductions in model size, with up to 75% reduction achieved using structured pruning techniques. Additionally, dynamic quantization achieves a reduction of up to 95% in the number of parameters. Fine-tuned models exhibit improved compression performance, indicating the benefits of pre-training in conjunction with compression techniques. Unstructured pruning methods reveal trends in accuracy and compression, with limited reductions in computational complexity. The combination of OTOV3 pruning and dynamic quantization further enhances compression performance, resulting 89.7% reduction in size, 95% reduction with number of parameters and MACs, and 3.8% increase with accuracy. The deployment of the final compressed model on edge device demonstrates high accuracy 92.5% and low inference time 20 ms, validating the effectiveness of compression techniques for real-world edge computing applications.
Related papers
- Theoretical Guarantees for Low-Rank Compression of Deep Neural Networks [5.582683296425384]
Deep neural networks have achieved state-of-the-art performance across numerous applications.
Low-rank approximation techniques offer a promising solution by reducing the size and complexity of these networks.
We develop an analytical framework for data-driven post-training low-rank compression.
arXiv Detail & Related papers (2025-02-04T23:10:13Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning [20.62274005080048]
PruneNet is a novel model compression method that reformulates model pruning as a policy learning process.
It can compress the LLaMA-2-7B model in just 15 minutes, achieving over 80% retention of its zero-shot performance.
On complex multitask language understanding tasks, PruneNet demonstrates its robustness by preserving up to 80% performance of the original model.
arXiv Detail & Related papers (2025-01-25T18:26:39Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
We study how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence.
We find that gradients require milder compression rates than activations.
Experiments also show that models trained with TopK perform well only when compression is also applied during inference.
arXiv Detail & Related papers (2024-01-15T15:54:54Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
We propose an ultrafast automated model compression framework called SeerNet for flexible network deployment.
Our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.
arXiv Detail & Related papers (2023-04-13T10:52:49Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z) - Deep Compression of Neural Networks for Fault Detection on Tennessee
Eastman Chemical Processes [2.297079626504224]
Three deep compression techniques are applied to reduce the computational burden.
The best result is applying all three techniques, which reduces the model sizes by 91.5% and remains a high accuracy over 94%.
arXiv Detail & Related papers (2021-01-18T10:53:12Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
We propose a model compression framework based on the recent progress on sparse optimization.
We achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation of accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet.
arXiv Detail & Related papers (2020-11-10T03:03:55Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
We tackle the problem of producing compact models, maximizing their accuracy for a given model size.
A standard solution is to train networks with Quantization Aware Training, where the weights are quantized during training and the gradients approximated with the Straight-Through Estimator.
In this paper, we extend this approach to work beyond int8 fixed-point quantization with extreme compression methods.
arXiv Detail & Related papers (2020-04-15T20:10:53Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.