Large Language Models versus Classical Machine Learning: Performance in COVID-19 Mortality Prediction Using High-Dimensional Tabular Data
- URL: http://arxiv.org/abs/2409.02136v1
- Date: Mon, 2 Sep 2024 14:51:12 GMT
- Title: Large Language Models versus Classical Machine Learning: Performance in COVID-19 Mortality Prediction Using High-Dimensional Tabular Data
- Authors: Mohammadreza Ghaffarzadeh-Esfahani, Mahdi Ghaffarzadeh-Esfahani, Arian Salahi-Niri, Hossein Toreyhi, Zahra Atf, Amirali Mohsenzadeh-Kermani, Mahshad Sarikhani, Zohreh Tajabadi, Fatemeh Shojaeian, Mohammad Hassan Bagheri, Aydin Feyzi, Mohammadamin Tarighatpayma, Narges Gazmeh, Fateme Heydari, Hossein Afshar, Amirreza Allahgholipour, Farid Alimardani, Ameneh Salehi, Naghmeh Asadimanesh, Mohammad Amin Khalafi, Hadis Shabanipour, Ali Moradi, Sajjad Hossein Zadeh, Omid Yazdani, Romina Esbati, Moozhan Maleki, Danial Samiei Nasr, Amirali Soheili, Hossein Majlesi, Saba Shahsavan, Alireza Soheilipour, Nooshin Goudarzi, Erfan Taherifard, Hamidreza Hatamabadi, Jamil S Samaan, Thomas Savage, Ankit Sakhuja, Ali Soroush, Girish Nadkarni, Ilad Alavi Darazam, Mohamad Amin Pourhoseingholi, Seyed Amir Ahmad Safavi-Naini,
- Abstract summary: This study aimed to evaluate and compare the performance of classical machine learning models (CMLs) and large language models (LLMs) in predicting mortality associated with COVID-19.
We analyzed data from 9,134 COVID-19 patients collected across four hospitals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: This study aimed to evaluate and compare the performance of classical machine learning models (CMLs) and large language models (LLMs) in predicting mortality associated with COVID-19 by utilizing a high-dimensional tabular dataset. Materials and Methods: We analyzed data from 9,134 COVID-19 patients collected across four hospitals. Seven CML models, including XGBoost and random forest (RF), were trained and evaluated. The structured data was converted into text for zero-shot classification by eight LLMs, including GPT-4 and Mistral-7b. Additionally, Mistral-7b was fine-tuned using the QLoRA approach to enhance its predictive capabilities. Results: Among the CML models, XGBoost and RF achieved the highest accuracy, with F1 scores of 0.87 for internal validation and 0.83 for external validation. In the LLM category, GPT-4 was the top performer with an F1 score of 0.43. Fine-tuning Mistral-7b significantly improved its recall from 1% to 79%, resulting in an F1 score of 0.74, which was stable during external validation. Conclusion: While LLMs show moderate performance in zero-shot classification, fine-tuning can significantly enhance their effectiveness, potentially aligning them closer to CML models. However, CMLs still outperform LLMs in high-dimensional tabular data tasks.
Related papers
- Structuring Radiology Reports: Challenging LLMs with Lightweight Models [5.01440254761063]
Large language models (LLMs) have shown strong capabilities in reformatting clinical text, their high computational requirements, lack of transparency, and data privacy concerns hinder practical deployment.<n>We explore lightweight encoder-decoder models (300M parameters)-specifically T5 and BERT2BERT-for structuring radiology reports from the MIMIC-CXR and CheXpert Plus datasets.<n>Our best-performing lightweight model outperforms all LLMs adapted using prompt-based techniques on a human-annotated test set.
arXiv Detail & Related papers (2025-05-30T20:12:51Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
We propose Enhancing Alignment in MLLMs via Critical Observation (EACO)
EACO aligns MLLMs by self-generated preference data using only 5k images economically.
EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition.
arXiv Detail & Related papers (2024-12-06T09:59:47Z) - Toward Automatic Relevance Judgment using Vision--Language Models for Image--Text Retrieval Evaluation [56.49084589053732]
Vision--Language Models (VLMs) have demonstrated success across diverse applications, yet their potential to assist in relevance judgments remains uncertain.
This paper assesses the relevance estimation capabilities of VLMs, including CLIP, LLaVA, and GPT-4V, within a large-scale textitad hoc retrieval task tailored for multimedia content creation in a zero-shot fashion.
arXiv Detail & Related papers (2024-08-02T16:15:25Z) - Closing the gap between open-source and commercial large language models for medical evidence summarization [20.60798771155072]
Large language models (LLMs) hold great promise in summarizing medical evidence.
Most recent studies focus on the application of proprietary LLMs.
While open-source LLMs allow better transparency and customization, their performance falls short compared to proprietary ones.
arXiv Detail & Related papers (2024-07-25T05:03:01Z) - Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation [20.41379322900742]
We introduce FLAMe, a family of Foundational Large Autorater Models.
FLAMe is trained on our large and diverse collection of 100+ quality assessment tasks.
We show that FLAMe can also serve as a powerful starting point for further downstream fine-tuning.
arXiv Detail & Related papers (2024-07-15T15:33:45Z) - DataComp-LM: In search of the next generation of training sets for language models [200.5293181577585]
DataComp for Language Models (DCLM) is a testbed for controlled dataset experiments with the goal of improving language models.
We provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations.
Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters.
arXiv Detail & Related papers (2024-06-17T17:42:57Z) - RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness [94.03511733306296]
We introduce RLAIF-V, a framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness.
RLAIF-V maximally exploits the open-source feedback from two perspectives, including high-quality feedback data and online feedback learning algorithm.
Experiments show that RLAIF-V substantially enhances the trustworthiness of models without sacrificing performance on other tasks.
arXiv Detail & Related papers (2024-05-27T14:37:01Z) - A comparative study of zero-shot inference with large language models
and supervised modeling in breast cancer pathology classification [1.4715634464004446]
Large language models (LLMs) have demonstrated promising transfer learning capability.
LLMs demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for curating large annotated datasets.
This may result in an increase in the utilization of NLP-based variables and outcomes in observational clinical studies.
arXiv Detail & Related papers (2024-01-25T02:05:31Z) - Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation [50.00235162432848]
We train ALMA models with only 22K parallel sentences and 12M parameters.
The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4.
arXiv Detail & Related papers (2024-01-16T15:04:51Z) - Low-resource classification of mobility functioning information in
clinical sentences using large language models [0.0]
This study evaluates the ability of publicly available large language models (LLMs) to accurately identify the presence of functioning information from clinical notes.
We collect a balanced binary classification dataset of 1000 sentences from the Mobility NER dataset, which was curated from n2c2 clinical notes.
arXiv Detail & Related papers (2023-12-15T20:59:17Z) - DavIR: Data Selection via Implicit Reward for Large Language Models [62.59514469369608]
DavIR is a model-based data selection method for post-training Large Language Models.
We show that 6% of Alpaca dataset selected with DavIR can steer both the LLaMA and Gemma model family to produce superior performance compared to the same models trained on the full 52K dataset.
arXiv Detail & Related papers (2023-10-16T07:26:24Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Exploring the Value of Pre-trained Language Models for Clinical Named
Entity Recognition [6.917786124918387]
We compare Transformer models that are trained from scratch to fine-tuned BERT-based LLMs.
We examine the impact of an additional CRF layer on such models to encourage contextual learning.
arXiv Detail & Related papers (2022-10-23T16:27:31Z) - Alexa Teacher Model: Pretraining and Distilling Multi-Billion-Parameter
Encoders for Natural Language Understanding Systems [63.713297451300086]
We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B.
Their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system.
arXiv Detail & Related papers (2022-06-15T20:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.