論文の概要: Optimal Power Grid Operations with Foundation Models
- arxiv url: http://arxiv.org/abs/2409.02148v1
- Date: Tue, 3 Sep 2024 09:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:50:21.091908
- Title: Optimal Power Grid Operations with Foundation Models
- Title(参考訳): 基礎モデルを用いた最適電力グリッド運用
- Authors: Alban Puech, Jonas Weiss, Thomas Brunschwiler, Hendrik F. Hamann,
- Abstract要約: 本稿では,AIファンデーションモデル(FM)とグラフニューラルネットワークの進歩を利用して,ダウンストリームタスクの低可用性グリッドデータを効率的に活用することを提案する。
グリッドの基盤となる物理を捉えるために、電力流力学を学習する自己教師型モデルの構築は、電力グリッドのためのFMを開発するための重要な第一歩であると信じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The energy transition, crucial for tackling the climate crisis, demands integrating numerous distributed, renewable energy sources into existing grids. Along with climate change and consumer behavioral changes, this leads to changes and variability in generation and load patterns, introducing significant complexity and uncertainty into grid planning and operations. While the industry has already started to exploit AI to overcome computational challenges of established grid simulation tools, we propose the use of AI Foundation Models (FMs) and advances in Graph Neural Networks to efficiently exploit poorly available grid data for different downstream tasks, enhancing grid operations. For capturing the grid's underlying physics, we believe that building a self-supervised model learning the power flow dynamics is a critical first step towards developing an FM for the power grid. We show how this approach may close the gap between the industry needs and current grid analysis capabilities, to bring the industry closer to optimal grid operation and planning.
- Abstract(参考訳): 気候変動に対処するために重要なエネルギー移行は、多くの分散型再生可能エネルギー源を既存のグリッドに統合することを要求する。
気候変動や消費者の行動の変化とともに、これは世代や負荷パターンの変化と変動をもたらし、グリッド計画や運用にかなりの複雑さと不確実性をもたらす。
業界はすでに、確立されたグリッドシミュレーションツールの計算上の課題を克服するためにAIを活用し始めていますが、我々は、さまざまな下流タスクで不利用可能なグリッドデータを効率的に活用し、グリッド操作を強化するために、AI Foundation Models(FM)とGraph Neural Networksの進歩を提案しています。
グリッドの基盤となる物理を捉えるために、電力流力学を学習する自己教師型モデルの構築は、電力グリッドのためのFMを開発するための重要な第一歩であると信じている。
このアプローチが、業界のニーズと現在のグリッド分析能力のギャップを埋めて、業界を最適なグリッド運用と計画に近づける方法を示します。
関連論文リスト
- Accelerating Quasi-Static Time Series Simulations with Foundation Models [36.7183558293052]
我々は、最近導入されたグリッド基礎モデルが、ニューラルパワーフローソルバの経済性を改善することを想定する。
私たちはこれらのモデルを開発し、オープンソース化するために、AIと電力グリッドコミュニティの協力を求めます。
論文 参考訳(メタデータ) (2024-11-13T14:42:32Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
我々は,電力システム(PS)におけるグラフニューラルネットワーク(GNN)のための,最初のシミュレータに依存しない,安全指向のフレームワークであるSafePowerGraphを紹介する。
SafePowerGraphは複数のPFシミュレータとOPFシミュレータを統合し、エネルギー価格の変動や電力線停止など、さまざまなシナリオでGNNのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-07-17T09:01:38Z) - Foundation Models for the Electric Power Grid [53.02072064670517]
ファンデーションモデル(FM)がニュースの見出しを支配している。
多様なグリッドデータやトポロジからFMを学習することで、トランスフォーメーション能力が解放されるのではないか、と私たちは主張する。
本稿では,グラフニューラルネットワークに基づく電力グリッドFMの概念,すなわちGridFMについて論じる。
論文 参考訳(メタデータ) (2024-07-12T17:09:47Z) - Data-driven Energy Efficiency Modelling in Large-scale Networks: An Expert Knowledge and ML-based Approach [8.326834499339107]
本稿では,通信ネットワーク(SRCON)フレームワークのシミュレーション現実について紹介する。
ライブのネットワークデータを活用し、機械学習(ML)とエキスパートベースのモデルをブレンドする。
その結果、ネットワークエネルギー効率のモデリングにオペレーターが使用する最先端技術よりも大きな効果が得られた。
論文 参考訳(メタデータ) (2023-12-31T10:03:08Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
Gaussian Process (GP) ベースのChance-Constrained Optimal Flow (CC-OPF) は、電力グリッドにおけるエコノミックディスパッチ(ED)問題のためのオープンソースのPythonコードである。
CC-OPモデルに基づく新しいデータ駆動手法を提案し,複雑性と精度のトレードオフにより大規模な回帰問題を解く。
論文 参考訳(メタデータ) (2023-02-16T17:59:06Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2022-11-14T01:29:09Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
グラフニューラルネットワークを用いて、要求された電力と対応するアロケーションとの間の非線形パラメトリゼーションを学習する。
シミュレーションを通して、この教師なし学習コンテキストにおけるGNNの使用は、標準解法に匹敵するソリューションにつながることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:30:09Z) - Toward Dynamic Stability Assessment of Power Grid Topologies using Graph
Neural Networks [0.0]
Renewablesは、分散化による動的安定性、慣性低下、生産時のボラティリティに関する電力グリッドに新たな課題を導入している。
グラフニューラルネットワーク(GNN)は電力グリッドの動的安定性を解析する計算労力を削減するための有望な手法である。
GNNは、トポロジカル情報のみから高度に非線形なターゲットを予測するのに驚くほど効果的です。
論文 参考訳(メタデータ) (2022-06-10T07:23:22Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
グラフニューラルネットワーク(GNN)の枠組みに基づくエネルギーシステムのためのデータおよび知識駆動型確率的グラフィカルモデルを提案する。
このモデルは、グリッドトポロジや物理制約の形で、明らかにドメイン知識をファクタリングし、スパーアーキテクチャとはるかに小さなパラメータの寸法性をもたらす。
実世界のスマートグリッドデモプロジェクトから得られた結果は、グリッドの混雑予測や市場入札サービスにどのようにGNNを使用したかを示している。
論文 参考訳(メタデータ) (2021-03-12T13:00:01Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。