論文の概要: Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets
- arxiv url: http://arxiv.org/abs/2211.07645v1
- Date: Mon, 14 Nov 2022 01:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 13:07:33.216656
- Title: Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets
- Title(参考訳): 超構造グラフ畳み込みネットによる配電系統の信頼性評価
- Authors: Yuzhou Chen, Tian Jiang, Miguel Heleno, Alexandre Moreira, Yulia R.
Gel
- Abstract要約: 本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
- 参考スコア(独自算出の注目度): 74.51865676466056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, it is broadly recognized in the power system community that to meet
the ever expanding energy sector's needs, it is no longer possible to rely
solely on physics-based models and that reliable, timely and sustainable
operation of energy systems is impossible without systematic integration of
artificial intelligence (AI) tools. Nevertheless, the adoption of AI in power
systems is still limited, while integration of AI particularly into
distribution grid investment planning is still an uncharted territory. We make
the first step forward to bridge this gap by showing how graph convolutional
networks coupled with the hyperstructures representation learning framework can
be employed for accurate, reliable, and computationally efficient distribution
grid planning with resilience objectives. We further propose a Hyperstructures
Graph Convolutional Neural Networks (Hyper-GCNNs) to capture hidden higher
order representations of distribution networks with attention mechanism. Our
numerical experiments show that the proposed Hyper-GCNNs approach yields
substantial gains in computational efficiency compared to the prevailing
methodology in distribution grid planning and also noticeably outperforms seven
state-of-the-art models from deep learning (DL) community.
- Abstract(参考訳): 現在、電力システムコミュニティでは、拡大を続けるエネルギーセクターのニーズを満たすために、もはや物理モデルのみに頼ることは不可能であり、人工知能(AI)ツールの体系的な統合なしには、信頼性、時間的、持続的なエネルギーシステムの運用は不可能である、と広く認識されている。
それでも、電力システムにおけるAIの採用は限定的であり、特に配電網投資計画へのAIの統合は、まだ未知の領域である。
このギャップを埋める第一歩として,超構造表現学習フレームワークとグラフ畳み込みネットワークが,レジリエンス目標の精度,信頼性,計算効率のよい分散グリッド計画にどのように活用されているかを示す。
さらに,ハイパー構造グラフ畳み込みニューラルネットワーク(Hyper-GCNN)を提案する。
数値実験の結果,超gcnns手法は,分散グリッド計画における一般的な手法に比べ計算効率が大幅に向上し,ディープラーニング(dl)コミュニティの7つの最先端モデルを上回ることがわかった。
関連論文リスト
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処するために設計された,複雑なネットワークに対する新しいレジリエンス予測フレームワークを提案する。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
論文 参考訳(メタデータ) (2024-08-19T09:20:31Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
我々は,電力システム(PS)におけるグラフニューラルネットワーク(GNN)のための,最初のシミュレータに依存しない,安全指向のフレームワークであるSafePowerGraphを紹介する。
SafePowerGraphは複数のPFシミュレータとOPFシミュレータを統合し、エネルギー価格の変動や電力線停止など、さまざまなシナリオでGNNのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-07-17T09:01:38Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
本論文は、まず、分散不確実性や逆データに対して汎用機械学習モデルを堅牢にするための原則的手法を開発する。
次に、この堅牢なフレームワークの上に構築し、グラフメソッドによる堅牢な半教師付き学習を設計します。
この論文の第2部は、次世代の有線および無線ネットワークの可能性を完全に解き放つことを意図している。
論文 参考訳(メタデータ) (2022-02-08T05:49:06Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
グラフニューラルネットワーク(GNN)の枠組みに基づくエネルギーシステムのためのデータおよび知識駆動型確率的グラフィカルモデルを提案する。
このモデルは、グリッドトポロジや物理制約の形で、明らかにドメイン知識をファクタリングし、スパーアーキテクチャとはるかに小さなパラメータの寸法性をもたらす。
実世界のスマートグリッドデモプロジェクトから得られた結果は、グリッドの混雑予測や市場入札サービスにどのようにGNNを使用したかを示している。
論文 参考訳(メタデータ) (2021-03-12T13:00:01Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
分散コントローラを学習するグラフニューラルネットワーク(GNN)を用いた新しいフレームワークを提案する。
GNNは、自然分散アーキテクチャであり、優れたスケーラビリティと転送性を示すため、タスクに適している。
分散コントローラの学習におけるGNNの可能性を説明するために、群れとマルチエージェントパス計画の問題を検討する。
論文 参考訳(メタデータ) (2020-12-29T18:59:14Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
本稿では,複雑な機器の構造をグラフ形式で把握し,マルチセンサ時系列データをモデル化するためにグラフニューラルネットワーク(GNN)を用いる。
我々は,提案したGNNに基づくRUL推定モデルが,RNNやCNNをベースとした文学からの強いベースラインと好意的に比較した。
論文 参考訳(メタデータ) (2020-06-30T06:38:08Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。