Multi-Agent Reinforcement Learning for Joint Police Patrol and Dispatch
- URL: http://arxiv.org/abs/2409.02246v1
- Date: Tue, 3 Sep 2024 19:19:57 GMT
- Title: Multi-Agent Reinforcement Learning for Joint Police Patrol and Dispatch
- Authors: Matthew Repasky, He Wang, Yao Xie,
- Abstract summary: We propose a novel method for jointly optimizing multi-agent patrol and dispatch to learn policies yielding rapid response times.
Our method treats each patroller as an independent Q-learner (agent) with a shared deep Q-network that represents the state-action values.
We demonstrate that this heterogeneous multi-agent reinforcement learning approach is capable of learning policies that optimize for patrol or dispatch alone.
- Score: 13.336551874123796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Police patrol units need to split their time between performing preventive patrol and being dispatched to serve emergency incidents. In the existing literature, patrol and dispatch decisions are often studied separately. We consider joint optimization of these two decisions to improve police operations efficiency and reduce response time to emergency calls. Methodology/results: We propose a novel method for jointly optimizing multi-agent patrol and dispatch to learn policies yielding rapid response times. Our method treats each patroller as an independent Q-learner (agent) with a shared deep Q-network that represents the state-action values. The dispatching decisions are chosen using mixed-integer programming and value function approximation from combinatorial action spaces. We demonstrate that this heterogeneous multi-agent reinforcement learning approach is capable of learning joint policies that outperform those optimized for patrol or dispatch alone. Managerial Implications: Policies jointly optimized for patrol and dispatch can lead to more effective service while targeting demonstrably flexible objectives, such as those encouraging efficiency and equity in response.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Multi-Agent Transfer Learning via Temporal Contrastive Learning [8.487274986507922]
This paper introduces a novel transfer learning framework for deep multi-agent reinforcement learning.
The approach automatically combines goal-conditioned policies with temporal contrastive learning to discover meaningful sub-goals.
arXiv Detail & Related papers (2024-06-03T14:42:14Z) - Best Response Shaping [1.0874100424278175]
LOLA and POLA agents learn reciprocity-based cooperative policies by differentiation through a few look-ahead optimization steps of their opponent.
Because they consider a few optimization steps, a learning opponent that takes many steps to optimize its return may exploit them.
In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approxing the best response.
arXiv Detail & Related papers (2024-04-05T22:03:35Z) - Robustifying a Policy in Multi-Agent RL with Diverse Cooperative Behaviors and Adversarial Style Sampling for Assistive Tasks [51.00472376469131]
We propose a framework that learns a robust caregiver's policy by training it for diverse care-receiver responses.
We demonstrate that policies trained with a popular deep RL method are vulnerable to changes in policies of other agents.
arXiv Detail & Related papers (2024-03-01T08:15:18Z) - Autonomous Vehicle Patrolling Through Deep Reinforcement Learning:
Learning to Communicate and Cooperate [3.79830302036482]
Finding an optimal patrolling strategy can be challenging due to unknown environmental factors, such as wind or landscape.
Agents are trained to develop their own communication protocol to cooperate during patrolling where faults can and do occur.
The solution is validated through simulation experiments and is compared with several state-of-the-art patrolling solutions from different perspectives.
arXiv Detail & Related papers (2024-01-28T14:29:30Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - An Energy-aware and Fault-tolerant Deep Reinforcement Learning based
approach for Multi-agent Patrolling Problems [0.5008597638379226]
We propose an approach based on model-free, deep multi-agent reinforcement learning.
Agents are trained to patrol an environment with various unknown dynamics and factors.
They can automatically recharge themselves to support continuous collective patrolling.
This architecture provides a patrolling system that can tolerate agent failures and allow supplementary agents to be added to replace failed agents or to increase the overall patrol performance.
arXiv Detail & Related papers (2022-12-16T01:38:35Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
We present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes.
We propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training.
To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system.
arXiv Detail & Related papers (2022-03-16T08:22:45Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.