On the Benefits of Memory for Modeling Time-Dependent PDEs
- URL: http://arxiv.org/abs/2409.02313v1
- Date: Tue, 3 Sep 2024 21:56:13 GMT
- Title: On the Benefits of Memory for Modeling Time-Dependent PDEs
- Authors: Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, Andrej Risteski,
- Abstract summary: We introduce Memory Neural Operator (MemNO), a network based on the recent SSM architectures and Fourier Neural Operator (FNO)
MemNO significantly outperforms the baselines without memory, achieving more than 6 times less error on unseen PDEs.
- Score: 35.86010060677811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven techniques have emerged as a promising alternative to traditional numerical methods for solving partial differential equations (PDEs). These techniques frequently offer a better trade-off between computational cost and accuracy for many PDE families of interest. For time-dependent PDEs, existing methodologies typically treat PDEs as Markovian systems, i.e., the evolution of the system only depends on the ``current state'', and not the past states. However, distortion of the input signals -- e.g., due to discretization or low-pass filtering -- can render the evolution of the distorted signals non-Markovian. In this work, motivated by the Mori-Zwanzig theory of model reduction, we investigate the impact of architectures with memory for modeling PDEs: that is, when past states are explicitly used to predict the future. We introduce Memory Neural Operator (MemNO), a network based on the recent SSM architectures and Fourier Neural Operator (FNO). We empirically demonstrate on a variety of PDE families of interest that when the input is given on a low-resolution grid, MemNO significantly outperforms the baselines without memory, achieving more than 6 times less error on unseen PDEs. Via a combination of theory and experiments, we show that the effect of memory is particularly significant when the solution of the PDE has high frequency Fourier components (e.g., low-viscosity fluid dynamics), and it also increases robustness to observation noise.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering.
Deep neural network based surrogates have gained increased interest.
arXiv Detail & Related papers (2023-08-10T17:53:05Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
Climate predictions require fine-temporal resolutions to resolve all turbulent scales in the fluid simulations.
Current numerical model solveers PDEs on grids that are too coarse (3km to 200km on each side)
We design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query.
arXiv Detail & Related papers (2022-10-11T14:52:20Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines.
Recent advances in deep learning have shown the great potential of physics-informed neural networks (NNs) to solve PDEs as a basis for data-driven inverse analysis.
We propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhCRyNet-s) for solving PDEs without any labeled data.
arXiv Detail & Related papers (2021-06-26T22:22:19Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
We present a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method.
To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data.
arXiv Detail & Related papers (2020-12-22T02:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.