論文の概要: YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
- arxiv url: http://arxiv.org/abs/2409.02334v1
- Date: Tue, 3 Sep 2024 23:42:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:51:59.803860
- Title: YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
- Title(参考訳): YoloTag:視覚ベースのロバストUAVナビゲーション
- Authors: Sourav Raxit, Simant Bahadur Singh, Abdullah Al Redwan Newaz,
- Abstract要約: リアルタイムなフィデューシャルマーカーに基づくローカライズシステム「YoloTag textemdash」を提案する。
YoloTagは軽量のYOLO v8オブジェクト検出器を使用して、画像中の画像マーカーを正確に検出する。
検出されたマーカーは、UAV状態を推定するために効率的な視点-n-pointアルゴリズムによって使用される。
- 参考スコア(独自算出の注目度): 2.7855886538423182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By harnessing fiducial markers as visual landmarks in the environment, Unmanned Aerial Vehicles (UAVs) can rapidly build precise maps and navigate spaces safely and efficiently, unlocking their potential for fluent collaboration and coexistence with humans. Existing fiducial marker methods rely on handcrafted feature extraction, which sacrifices accuracy. On the other hand, deep learning pipelines for marker detection fail to meet real-time runtime constraints crucial for navigation applications. In this work, we propose YoloTag \textemdash a real-time fiducial marker-based localization system. YoloTag uses a lightweight YOLO v8 object detector to accurately detect fiducial markers in images while meeting the runtime constraints needed for navigation. The detected markers are then used by an efficient perspective-n-point algorithm to estimate UAV states. However, this localization system introduces noise, causing instability in trajectory tracking. To suppress noise, we design a higher-order Butterworth filter that effectively eliminates noise through frequency domain analysis. We evaluate our algorithm through real-robot experiments in an indoor environment, comparing the trajectory tracking performance of our method against other approaches in terms of several distance metrics.
- Abstract(参考訳): 環境の視覚的ランドマークとして画像マーカーを活用することで、無人航空機(UAV)は正確な地図を迅速に構築し、安全かつ効率的に空間をナビゲートすることができる。
既存の画像マーカー手法は手作りの特徴抽出に依存しており、精度を犠牲にしている。
一方、マーカー検出のためのディープラーニングパイプラインは、ナビゲーションアプリケーションに不可欠なリアルタイムランタイム制約を満たしていない。
そこで本研究では,リアルタイムなフィデューシャルマーカーに基づくローカライゼーションシステムであるYoloTag \textemdashを提案する。
YoloTagは、軽量のYOLO v8オブジェクト検出器を使用して、ナビゲーションに必要なランタイム制約を満たしながら、画像中のフィデューシャルマーカーを正確に検出する。
検出されたマーカーは、UAV状態を推定するために効率的な視点-n-pointアルゴリズムによって使用される。
しかし、この局所化システムはノイズを導入し、軌道追跡の不安定性を引き起こす。
雑音を抑制するため、周波数領域解析によりノイズを効果的に除去する高次バターワースフィルタを設計する。
室内環境における実ロボット実験により,提案手法の軌跡追跡性能と他の手法との比較を行った。
関連論文リスト
- RobMOT: Robust 3D Multi-Object Tracking by Observational Noise and State Estimation Drift Mitigation on LiDAR PointCloud [11.111388829965103]
この研究は、最近の3次元トラッキング・バイ・検出手法の限界に対処する。
そこで本稿では,正解トラックとゴーストトラックを時間的に区別する新しいオンライントラック妥当性メカニズムを提案する。
我々はまた、軌道ドリフトにおけるノイズ緩和を強化するカルマンフィルタの改良を導入し、閉塞物体のより堅牢な状態推定を可能にした。
論文 参考訳(メタデータ) (2024-05-19T12:49:21Z) - Landmark-based Localization using Stereo Vision and Deep Learning in
GPS-Denied Battlefield Environment [1.19658449368018]
本稿では、受動カメラセンサのみを用いた非GPS戦場環境におけるローカライズのための新しいフレームワークを提案する。
提案手法では,距離推定にカスタムキャリブレーションされたステレオカメラと,実世界のランドマーク認識のためのデータセットを用いて訓練および微調整を行うYOLOv8sモデルを用いる。
実験の結果,提案手法は既存のアンカーベースDV-Hopアルゴリズムよりも優れた性能を示し,ローカライゼーション誤差(RMSE)の点で最も効率的な視覚ベースアルゴリズムと競合することがわかった。
論文 参考訳(メタデータ) (2024-02-19T21:20:56Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
本研究では,多目的追跡のための双方向マッチングアルゴリズムを提案する。
ストランド領域はマッチングアルゴリズムで使われ、追跡できないオブジェクトを一時的に保存する。
MOT17チャレンジでは、提案アルゴリズムは63.4%のMOTA、55.3%のIDF1、20.1のFPS追跡速度を達成した。
論文 参考訳(メタデータ) (2023-03-15T08:38:08Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT)法は、トラッキング・バイ・検出のパラダイムに従っている。
混み合ったシーンに適したMOTパラダイムであるトラッキング・バイ・カウントを提案する。
論文 参考訳(メタデータ) (2020-07-18T19:51:53Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。