論文の概要: Pluralistic Salient Object Detection
- arxiv url: http://arxiv.org/abs/2409.02368v1
- Date: Wed, 4 Sep 2024 01:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:41:08.423048
- Title: Pluralistic Salient Object Detection
- Title(参考訳): 多元的有価物検出
- Authors: Xuelu Feng, Yunsheng Li, Dongdong Chen, Chunming Qiao, Junsong Yuan, Lu Yuan, Gang Hua,
- Abstract要約: 本稿では,与えられた入力画像に対して,複数の有意な有意な有意な有意な有意な有意な分割結果を生成することを目的とした新しい課題であるPSOD(multiistic Salient Object Detection)を紹介する。
新たに設計された評価指標とともに,2つのSODデータセット "DUTS-MM" と "DUS-MQ" を提案する。
- 参考スコア(独自算出の注目度): 108.74650817891984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image. Unlike conventional SOD methods that produce a single segmentation mask for salient objects, this new setting recognizes the inherent complexity of real-world images, comprising multiple objects, and the ambiguity in defining salient objects due to different user intentions. To study this task, we present two new SOD datasets "DUTS-MM" and "DUS-MQ", along with newly designed evaluation metrics. DUTS-MM builds upon the DUTS dataset but enriches the ground-truth mask annotations from three aspects which 1) improves the mask quality especially for boundary and fine-grained structures; 2) alleviates the annotation inconsistency issue; and 3) provides multiple ground-truth masks for images with saliency ambiguity. DUTS-MQ consists of approximately 100K image-mask pairs with human-annotated preference scores, enabling the learning of real human preferences in measuring mask quality. Building upon these two datasets, we propose a simple yet effective pluralistic SOD baseline based on a Mixture-of-Experts (MOE) design. Equipped with two prediction heads, it simultaneously predicts multiple masks using different query prompts and predicts human preference scores for each mask candidate. Extensive experiments and analyses underscore the significance of our proposed datasets and affirm the effectiveness of our PSOD framework.
- Abstract(参考訳): 本稿では,与えられた入力画像に対して,複数の有意な有意な有意な有意な有意な有意な分割結果を生成することを目的とした新しい課題であるPSOD(multiistic Salient Object Detection)を紹介する。
従来のサルエントオブジェクトに対して単一セグメンテーションマスクを生成するSOD方式とは異なり、この新しい設定では、複数のオブジェクトからなる実世界の画像の本質的な複雑さと、異なるユーザ意図によるサルエントオブジェクトの定義におけるあいまいさを認識している。
そこで本研究では,新しいSODデータセット「DUTS-MM」と「DUS-MQ」を新たに設計した評価指標とともに提示する。
DUTS-MMはDUTSデータセットの上に構築されるが、三つの側面から地道マスクアノテーションを充実させる
1)特に境界やきめ細かな構造物のマスク品質の向上。
2) アノテーションの不整合問題を緩和し,及び
3) 鮮明さと鮮明さを両立させるために, 複数枚の接地トラスマスクを提供する。
DUTS-MQは、約100Kの画像マスク対と人間の注釈付けされた嗜好スコアで構成されており、マスク品質の測定において実際の人間の嗜好を学習することができる。
これら2つのデータセットに基づいて,Mixture-of-Experts(MOE)設計に基づく,単純かつ効果的な多元的SODベースラインを提案する。
2つの予測ヘッドを備え、異なるクエリプロンプトを使用して複数のマスクを同時に予測し、各マスク候補に対する人間の選好スコアを予測する。
大規模な実験と分析により,提案したデータセットの重要性が明らかにされ,PSODフレームワークの有効性が確認された。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - MonoMAE: Enhancing Monocular 3D Detection through Depth-Aware Masked Autoencoders [93.87585467898252]
Masked Autoencodersにインスパイアされたモノクラー3D検出器MonoMAEを設計する。
MonoMAEは2つの新しい設計で構成されている。第一に、非閉塞オブジェクトクエリの特定の部分を選択的にマスキングするディープ・アウェア・マスクである。
2つ目は軽量なクエリ補完で、ディープ・アウェア・マスキングと連携して、マスキングされたオブジェクトクエリの再構築と完了を学習する。
論文 参考訳(メタデータ) (2024-05-13T12:32:45Z) - Self-Supervised Learning for Visual Relationship Detection through
Masked Bounding Box Reconstruction [6.798515070856465]
表現学習のための新しい自己教師型アプローチ,特に視覚的関係検出(VRD)の課題について述べる。
Masked Image Modeling (MIM) の有効性を活かして, Masked bounding Box Reconstruction (MBBR) を提案する。
論文 参考訳(メタデータ) (2023-11-08T16:59:26Z) - Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation [29.43462426812185]
本稿では,画素単位の分類からマスク分類へのシフトによるパラダイム変化を提案する。
マスクをベースとしたMask2Anomalyは,マスク分類アーキテクチャの統合の可能性を示した。
総合的質的・質的評価により, Mask2Anomaly は新たな最先端結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-08T20:07:18Z) - MMRDN: Consistent Representation for Multi-View Manipulation
Relationship Detection in Object-Stacked Scenes [62.20046129613934]
我々は,MMRDN(Multi-view MRD Network)と呼ばれる新しい多視点融合フレームワークを提案する。
異なるビューからの2Dデータを共通の隠れ空間に投影し、埋め込みをVon-Mises-Fisher分布に適合させる。
これら2つのオブジェクトの相対位置を符号化した各オブジェクト対の点雲から、K$最大垂直近傍点(KMVN)の集合を選択する。
論文 参考訳(メタデータ) (2023-04-25T05:55:29Z) - Efficient Masked Autoencoders with Self-Consistency [34.7076436760695]
マスク付き画像モデリング(MIM)はコンピュータビジョンにおける強力な自己教師付き事前学習手法として認識されている。
本研究では,自己整合性(EMAE)を有する効率的なマスク付きオートエンコーダを提案し,事前学習効率を向上させる。
EMAEは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな下流タスクにおける最先端の転送能力を一貫して取得する。
論文 参考訳(メタデータ) (2023-02-28T09:21:12Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
既存の手法では、目に見える部分を識別するために、余分なネットワークによって提供される身体の手がかりを利用することで、この問題に対処している。
2つの自己明快な事前知識に基づく新しい動的プロトタイプマスク(DPM)を提案する。
この条件下では、隠蔽された表現は、選択された部分空間において自然にうまく整列することができる。
論文 参考訳(メタデータ) (2022-07-19T03:31:13Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
POI(Point-of-Interest)機能によるインスタンスセグメンテーションにおけるマスク表現は、各インスタンスの高次元マスク機能を学ぶには、計算負荷が重いため、難しい。
本稿では、このマスク表現学習タスクを2つの抽出可能なモジュールに分解するインスタンス認識畳み込みを提案する。
インスタンス認識の畳み込みとともに、単純で実用的なインスタンスセグメンテーションアプローチであるPointINSを提案する。
論文 参考訳(メタデータ) (2020-03-13T08:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。