論文の概要: A Learnable Color Correction Matrix for RAW Reconstruction
- arxiv url: http://arxiv.org/abs/2409.02497v1
- Date: Wed, 4 Sep 2024 07:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:41:01.697182
- Title: A Learnable Color Correction Matrix for RAW Reconstruction
- Title(参考訳): RAW再構成のための学習可能な色補正マトリックス
- Authors: Anqi Liu, Shiyi Mu, Shugong Xu,
- Abstract要約: 複雑な逆画像信号処理装置(ISP)を近似する学習可能な色補正行列(CCM)を導入する。
実験結果から,本手法で生成したRAW(simRAW)画像は,より複雑な逆ISP法で生成した画像と同等の性能向上が得られた。
- 参考スコア(独自算出の注目度): 19.394856071610604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving algorithms usually employ sRGB images as model input due to their compatibility with the human visual system. However, visually pleasing sRGB images are possibly sub-optimal for downstream tasks when compared to RAW images. The availability of RAW images is constrained by the difficulties in collecting real-world driving data and the associated challenges of annotation. To address this limitation and support research in RAW-domain driving perception, we design a novel and ultra-lightweight RAW reconstruction method. The proposed model introduces a learnable color correction matrix (CCM), which uses only a single convolutional layer to approximate the complex inverse image signal processor (ISP). Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods when pretraining RAW-domain object detectors, which highlights the effectiveness and practicality of our approach.
- Abstract(参考訳): 自律運転アルゴリズムは通常、人間の視覚システムとの互換性のため、モデル入力としてsRGBイメージを使用する。
しかし、SRGB画像はRAW画像と比較すると、下流タスクに準最適である可能性がある。
RAW画像の入手は,実世界の運転データ収集の難しさとアノテーションの問題点に制約されている。
この制限に対処し、RAWドメイン駆動知覚における研究を支援するために、新しい超軽量RAW再構成法を設計する。
提案モデルでは,1つの畳み込み層のみを用いて複雑な逆画像信号処理(ISP)を近似する学習可能な色補正行列(CCM)を提案する。
実験により,本手法により生成されたRAW(simRAW)画像は,RAWドメインオブジェクト検出器の事前学習において,より複雑な逆ISP法で生成された画像と同等の性能向上を実現し,本手法の有効性と実用性を強調した。
関連論文リスト
- BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
RAW領域におけるブラインド画像の超解像化に取り組む。
生センサデータを用いたトレーニングモデルに特化した,現実的な劣化パイプラインを設計する。
私たちのパイプラインでトレーニングしたBSRAWモデルは、リアルタイムRAW画像をスケールアップし、品質を向上させることができます。
論文 参考訳(メタデータ) (2023-12-24T14:17:28Z) - Image Demoireing in RAW and sRGB Domains [18.921026683632146]
我々は、Gated Feedback Module (GFM) と Frequency Selection Module (FSM) を備えたスキップ接続型復号モジュール(SCDM)を開発した。
我々はRGB Guided ISP(RGISP)を設計し、デバイス依存のISPを学習し、色回復のプロセスを支援する。
我々のRRIDは、PSNRでは0.62dB、SSIMでは0.003のモアレパターン除去とカラーキャスト補正の性能において、最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-14T16:00:28Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection [1.1602089225841632]
メタデータとペア画像を必要としない自己教師付き逆ISP方式を提案する。
提案手法は,RGB画像を参照RAW画像と同じセンサで同一環境で撮影されたRAWライクな画像に変換する。
提案手法は,他の最先端教師付き手法に匹敵する精度で,様々な逆ISPを学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-24T11:12:05Z) - Raw Image Reconstruction with Learned Compact Metadata [61.62454853089346]
本稿では,メタデータとしての潜在空間におけるコンパクトな表現をエンドツーエンドで学習するための新しいフレームワークを提案する。
提案する生画像圧縮方式は,グローバルな視点から重要な画像領域に適応的により多くのビットを割り当てることができることを示す。
論文 参考訳(メタデータ) (2023-02-25T05:29:45Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
従来のカメラはセンサ上の画像光を捕捉し、画像信号プロセッサ(ISP)を用いてRGB画像に変換する。
RAW画像にはキャプチャされた全ての情報が含まれているため、ISPを用いたRAWからRGBへの変換はビジュアルコンピューティングには必要ないと論じることができる。
RAW画像を用いた高レベルセマンティック理解と低レベル圧縮を実現するための新しい$rho$-Visionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-15T12:54:21Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
本稿では,AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstructionを紹介する。
我々は,メタデータを使わずにRGBから生のセンサイメージを回収し,ISP変換を「逆」することを目的としている。
論文 参考訳(メタデータ) (2022-10-20T10:43:53Z) - Model-Based Image Signal Processors via Learnable Dictionaries [6.766416093990318]
デジタルカメラは画像信号処理装置(ISP)を用いてRAW読み出しをRGB画像に変換する
近年のアプローチでは、RGBからRAWマッピングを推定することで、このギャップを埋めようとしている。
本稿では,学習可能かつ解釈可能なハイブリッド・モデルベースかつデータ駆動型ISPを提案する。
論文 参考訳(メタデータ) (2022-01-10T08:36:10Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
我々は、低光強度でRAW画像を使用することの優位性について、最初のベンチマークを行う。
本研究では,RAW画像の特性を計測可能な因子に分解するFEM(Facterized Enhancement Model)を新たに開発した。
実アプリケーションにおけるRAW画像の利点と利用不可のトレードオフを生かしたREENet(RAW-guiding Exposure Enhancement Network)を開発した。
論文 参考訳(メタデータ) (2021-12-28T07:27:51Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
本稿では,画像アライメントとRAW-to-sRGBマッピングのための共同学習モデルを提案する。
実験の結果,本手法はZRRおよびSR-RAWデータセットの最先端に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-08-18T12:41:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。