論文の概要: RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation
- arxiv url: http://arxiv.org/abs/2411.13150v1
- Date: Wed, 20 Nov 2024 09:40:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:08.821199
- Title: RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation
- Title(参考訳): RAW拡散:高忠実RAW画像生成のためのRGB誘導拡散モデル
- Authors: Christoph Reinders, Radu Berdan, Beril Besbinar, Junji Otsuka, Daisuke Iso,
- Abstract要約: RGB画像でガイドされたRAW画像を生成するための新しい拡散法を提案する。
このアプローチは高忠実度RAW画像を生成し、カメラ固有のRAWデータセットの作成を可能にする。
提案手法を拡張してBDD100K-RAWとCityscapes-RAWデータセットを作成し,RAW画像におけるオブジェクト検出の有効性を明らかにする。
- 参考スコア(独自算出の注目度): 4.625376287612609
- License:
- Abstract: Current deep learning approaches in computer vision primarily focus on RGB data sacrificing information. In contrast, RAW images offer richer representation, which is crucial for precise recognition, particularly in challenging conditions like low-light environments. The resultant demand for comprehensive RAW image datasets contrasts with the labor-intensive process of creating specific datasets for individual sensors. To address this, we propose a novel diffusion-based method for generating RAW images guided by RGB images. Our approach integrates an RGB-guidance module for feature extraction from RGB inputs, then incorporates these features into the reverse diffusion process with RGB-guided residual blocks across various resolutions. This approach yields high-fidelity RAW images, enabling the creation of camera-specific RAW datasets. Our RGB2RAW experiments on four DSLR datasets demonstrate state-of-the-art performance. Moreover, RAW-Diffusion demonstrates exceptional data efficiency, achieving remarkable performance with as few as 25 training samples or even fewer. We extend our method to create BDD100K-RAW and Cityscapes-RAW datasets, revealing its effectiveness for object detection in RAW imagery, significantly reducing the amount of required RAW images.
- Abstract(参考訳): コンピュータビジョンにおける最近のディープラーニングアプローチは、主にRGBデータ犠牲な情報に焦点を当てている。
対照的に、RAW画像はよりリッチな表現を提供しており、特に低照度環境のような困難な環境では、正確な認識に不可欠である。
その結果、包括的なRAW画像データセットの需要は、個々のセンサーのための特定のデータセットを作成する労働集約的なプロセスとは対照的である。
そこで本研究では,RGB画像にガイドされたRAW画像を生成するための拡散に基づく新しい手法を提案する。
提案手法は,RGB入力から特徴抽出のためのRGB誘導モジュールを統合し,RGB誘導残差ブロックを用いた逆拡散プロセスにこれらの特徴を組み込む。
このアプローチは高忠実度RAW画像を生成し、カメラ固有のRAWデータセットの作成を可能にする。
4つのDSLRデータセットに対するRGB2RAW実験は、最先端の性能を示す。
さらに、RAW-Diffusionは例外的なデータ効率を示し、25のトレーニングサンプルまたはそれ以下で優れたパフォーマンスを実現している。
提案手法を拡張してBDD100K-RAWとCityscapes-RAWのデータセットを作成し、RAW画像におけるオブジェクト検出の有効性を明らかにし、必要なRAW画像の量を著しく削減する。
関連論文リスト
- A Learnable Color Correction Matrix for RAW Reconstruction [19.394856071610604]
複雑な逆画像信号処理装置(ISP)を近似する学習可能な色補正行列(CCM)を導入する。
実験結果から,本手法で生成したRAW(simRAW)画像は,より複雑な逆ISP法で生成した画像と同等の性能向上が得られた。
論文 参考訳(メタデータ) (2024-09-04T07:46:42Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
RAW領域におけるブラインド画像の超解像化に取り組む。
生センサデータを用いたトレーニングモデルに特化した,現実的な劣化パイプラインを設計する。
私たちのパイプラインでトレーニングしたBSRAWモデルは、リアルタイムRAW画像をスケールアップし、品質を向上させることができます。
論文 参考訳(メタデータ) (2023-12-24T14:17:28Z) - Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection [1.1602089225841632]
メタデータとペア画像を必要としない自己教師付き逆ISP方式を提案する。
提案手法は,RGB画像を参照RAW画像と同じセンサで同一環境で撮影されたRAWライクな画像に変換する。
提案手法は,他の最先端教師付き手法に匹敵する精度で,様々な逆ISPを学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-24T11:12:05Z) - Raw Image Reconstruction with Learned Compact Metadata [61.62454853089346]
本稿では,メタデータとしての潜在空間におけるコンパクトな表現をエンドツーエンドで学習するための新しいフレームワークを提案する。
提案する生画像圧縮方式は,グローバルな視点から重要な画像領域に適応的により多くのビットを割り当てることができることを示す。
論文 参考訳(メタデータ) (2023-02-25T05:29:45Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
本稿では,AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstructionを紹介する。
我々は,メタデータを使わずにRGBから生のセンサイメージを回収し,ISP変換を「逆」することを目的としている。
論文 参考訳(メタデータ) (2022-10-20T10:43:53Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
我々は、低光強度でRAW画像を使用することの優位性について、最初のベンチマークを行う。
本研究では,RAW画像の特性を計測可能な因子に分解するFEM(Facterized Enhancement Model)を新たに開発した。
実アプリケーションにおけるRAW画像の利点と利用不可のトレードオフを生かしたREENet(RAW-guiding Exposure Enhancement Network)を開発した。
論文 参考訳(メタデータ) (2021-12-28T07:27:51Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
本稿では,画像アライメントとRAW-to-sRGBマッピングのための共同学習モデルを提案する。
実験の結果,本手法はZRRおよびSR-RAWデータセットの最先端に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-08-18T12:41:36Z) - Invertible Image Signal Processing [42.109752151834456]
InvISP(Invertible Image Signal Processing)パイプラインにより、視覚的に魅力的なsRGBイメージをレンダリングできます。
メモリのオーバーヘッドなしにsrgb画像から生データを合成する代わりに、リアルな生データを再構築できる。
論文 参考訳(メタデータ) (2021-03-28T06:30:15Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
既存のRGB-Dサリエンシデータセットは小さく、多様なシナリオに対して過度に適合し、限定的な一般化につながる可能性がある。
そこで本研究では,RGB-Dサリエンシ検出のための半教師付きシステムを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。