論文の概要: Advancing Cyber Incident Timeline Analysis Through Rule Based AI and Large Language Models
- arxiv url: http://arxiv.org/abs/2409.02572v1
- Date: Wed, 4 Sep 2024 09:46:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:10:42.924437
- Title: Advancing Cyber Incident Timeline Analysis Through Rule Based AI and Large Language Models
- Title(参考訳): ルールベースAIと大規模言語モデルによるサイバーインシデントタイムライン分析の促進
- Authors: Fatma Yasmine Loumachi, Mohamed Chahine Ghanem,
- Abstract要約: 本稿では,ルールベース人工知能(R-BAI)アルゴリズムとLarge Language Models(LLM)アルゴリズムを組み合わせた新しいフレームワークGenDFIRを提案する。
我々は,GenDFIRの性能,効率,信頼性を,総合サイバーインシデントシミュレーションのシナリオで評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Timeline Analysis (TA) is a key part of Timeline Forensics (TF) in Digital Forensics (DF), focusing primarily on examining and analysing temporal digital artefacts such as timestamps, derived from event logs, file metadata, and other related data to correlate events resulting from cyber incidents and reconstruct their chronological timeline. Traditional tools often struggle to efficiently process the vast volume and variety of data acquired during DF investigations and Incident Response (IR) processes. This paper presents a novel framework, GenDFIR, that combines Rule-Based Artificial Intelligence (R-BAI) algorithms with Large Language Models (LLMs) to advance and automate the TA process. Our approach consists of two main stages (1) We use R-BAI to identify and select anomalous digital artefacts based on predefined rules. (2) The selected artefacts are then converted into embeddings for processing by an LLM with the help of a Retrieval-Augmented Generation (RAG) agent. The LLM consequently leverages its capabilities to perform automated TA on the artefacts and predict potential incident scenarios. To validate our framework, we evaluate GenDFIR performance, efficiency, and reliability using various metrics across synthetic cyber incident simulation scenarios. This paper presents a proof of concept, where the findings demonstrate the significant potential of integrating R-BAI and LLMs for TA. This novel approach highlights the power of Generative AI (GenAI), specifically LLMs, and opens new avenues for advanced threat detection and incident reconstruction, representing a significant step forward in the field.
- Abstract(参考訳): タイムライン分析(英: Timeline Analysis, TA)は、主にタイムスタンプや、イベントログ、ファイルメタデータ、その他の関連データから得られた時間的デジタルアーティファクトを調べ、分析し、サイバーインシデントに起因する事象を関連付け、時系列を再構築することに焦点を当てた、デジタルフォサイシクス(DF)におけるタイムラインフォサイシクス(TF)の重要な部分である。
従来のツールは、DF調査やインシデント対応(IR)プロセスで取得した膨大な量のデータを効率的に処理するのに苦労することが多い。
本稿では,ルールベース人工知能(R-BAI)アルゴリズムとLarge Language Models(LLM)アルゴリズムを組み合わせた新しいフレームワークGenDFIRを提案する。
提案手法は, R-BAIを用いて, 予め定義されたルールに基づいて, 異常なデジタルアーティファクトを特定し, 選択する。
2) 選択されたアーティファクトは、検索補助生成(RAG)エージェントの助けを借りて、LCMにより処理するための埋め込みに変換される。
LLMはその能力を活用して、アーティファクト上で自動TAを実行し、潜在的なインシデントシナリオを予測する。
我々は,GenDFIRの性能,効率,信頼性を,総合サイバーインシデントシミュレーションのシナリオで評価した。
本稿では, TA に R-BAI と LLM を統合する可能性を示す概念実証について述べる。
この新しいアプローチは、ジェネレーティブAI(GenAI)、特にLLMの力を強調し、高度な脅威検出とインシデント再構築のための新たな道を開く。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
例えば、大規模な言語モデル(LLM)は、インターネットスケールのデータに基づいて訓練され、ゼロショット機能を持つ。
本稿では,潜在的な異常に関する判断を安全な制御フレームワークに組み込む2段階の推論フレームワークを提案する。
これにより、モニターは、四輪車や自動運転車のような動的ロボットシステムの信頼性を向上させることができる。
論文 参考訳(メタデータ) (2024-07-11T17:59:22Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Can Foundational Large Language Models Assist with Conducting Pharmaceuticals Manufacturing Investigations? [0.0]
我々は、特定のユースケース、医薬品製造調査に焦点をあてる。
本稿では, 製造事故や逸脱の歴史的記録を活用することで, 新規事例に対処し, 閉鎖する上で有益であることが示唆された。
そこで本研究では, ベクトル埋め込みによる差分記述のセマンティック検索により, 類似した記録を同定できることを示す。
論文 参考訳(メタデータ) (2024-04-24T00:56:22Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
現在の大規模言語モデル(LLM)は時系列解析に革命をもたらす可能性があると我々は主張する。
このような進歩は、時系列のモダリティスイッチングや質問応答など、幅広い可能性を解き放つ可能性がある。
論文 参考訳(メタデータ) (2024-02-05T04:17:49Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワーク上のマルチステップ攻撃をモデル化し分析する最も適したソリューションである。
本稿では,AG生成のための分析駆動型フレームワークを紹介する。
定量的な統計的意義を持つAG生成が完了する前に、リアルタイムな攻撃経路解析を可能にする。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - AART: AI-Assisted Red-Teaming with Diverse Data Generation for New
LLM-powered Applications [5.465142671132731]
大規模言語モデル(LLM)のアドバイザリテストは、安全で責任のあるデプロイメントに不可欠である。
本稿では,新しい下流アプリケーション上でのLCM生成の安全性をテストするために,逆評価データセットの自動生成のための新しいアプローチを提案する。
AI支援のレッドチーム(AART)と呼ばれています。
論文 参考訳(メタデータ) (2023-11-14T23:28:23Z) - A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response [0.0]
目標は、デジタル法医学とインシデント対応において、AIとMLのテクニックがどのように使われているか、詳しく調べることである。
この取り組みは、AI駆動の方法論がこれらの重要なデジタル法医学の実践を形作っている複雑な方法を明らかにするために、表面のずっと下を掘り下げる。
最終的に、この論文は、デジタル法医学におけるAIとMLの統合の重要性を強調し、現代のサイバー脅威に取り組む上での、彼らのメリット、欠点、より広範な意味についての洞察を提供する。
論文 参考訳(メタデータ) (2023-09-13T16:23:53Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
本研究は、ファシズムモデルのための連続パラメータ化を構築するためのオートエンコーダネットワークの利用に焦点を当てる。
本稿では,VAE,GAN,Wasserstein GAN,変分自動符号化GAN,サイクルGANの主成分分析(PCA),転送スタイルネットワークのPCA,スタイル損失のVAEの7種類の定式化をベンチマークする。
論文 参考訳(メタデータ) (2020-05-08T21:32:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。