論文の概要: GenDFIR: Advancing Cyber Incident Timeline Analysis Through Retrieval Augmented Generation and Large Language Models
- arxiv url: http://arxiv.org/abs/2409.02572v4
- Date: Fri, 27 Dec 2024 13:29:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:23:42.515899
- Title: GenDFIR: Advancing Cyber Incident Timeline Analysis Through Retrieval Augmented Generation and Large Language Models
- Title(参考訳): GenDFIR:Retrieval Augmented Generationと大規模言語モデルによるサイバーインシデントタイムライン解析の強化
- Authors: Fatma Yasmine Loumachi, Mohamed Chahine Ghanem, Mohamed Amine Ferrag,
- Abstract要約: デジタル法医学とインシデント応答(DFIR)におけるサイバータイムライン解析の重要性
伝統的な手法は、証拠の識別と特徴抽出のためにログやメタデータのような構造化された成果物に依存している。
本稿では,大規模言語モデル(LLM)を利用したフレームワークであるGenDFIR,特にゼロショットモードのLlama 3.1 8Bについて紹介し,Retrieval-Augmented Generation (RAG)エージェントと統合する。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License:
- Abstract: Cyber timeline analysis, or forensic timeline analysis, is crucial in Digital Forensics and Incident Response (DFIR). It examines artefacts and events particularly timestamps and metadata to detect anomalies, establish correlations, and reconstruct incident timelines. Traditional methods rely on structured artefacts, such as logs and filesystem metadata, using specialised tools for evidence identification and feature extraction. This paper introduces GenDFIR, a framework leveraging large language models (LLMs), specifically Llama 3.1 8B in zero shot mode, integrated with a Retrieval-Augmented Generation (RAG) agent. Incident data is preprocessed into a structured knowledge base, enabling the RAG agent to retrieve relevant events based on user prompts. The LLM interprets this context, offering semantic enrichment. Tested on synthetic data in a controlled environment, results demonstrate GenDFIR's reliability and robustness, showcasing LLMs potential to automate timeline analysis and advance threat detection.
- Abstract(参考訳): サイバー・タイムライン分析(サイバー・タイムライン・アナリティクス、英: Cyber timeline analysis)は、デジタル・フォサイシクスとインシデント・レスポンス(DFIR)において重要である。
アーティファクトやイベント、特にタイムスタンプやメタデータを調べ、異常を検出し、相関を確立し、インシデントタイムラインを再構築する。
従来の手法はログやファイルシステムのメタデータといった構造化された成果物に依存しており、証拠の特定と特徴抽出のための特別なツールを使用する。
本稿では,大規模言語モデル(LLM)を利用したフレームワークであるGenDFIR,特にゼロショットモードのLlama 3.1 8Bについて紹介し,Retrieval-Augmented Generation (RAG)エージェントと統合する。
インシデントデータを構造化知識ベースに前処理し、RAGエージェントがユーザプロンプトに基づいて関連するイベントを検索できるようにする。
LLMはこの文脈を解釈し、セマンティックエンリッチメントを提供する。
制御された環境下での合成データを用いて実験を行い,GenDFIRの信頼性とロバスト性を示し,時系列解析の自動化と脅威検出の進展を示す。
関連論文リスト
- See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
時系列データの急激な増加に伴い,時系列異常検出(TSAD)はますます重要になりつつある。
本稿では,TMA(Time Series Anomaly Multimodal Analyzer)と呼ばれる先駆的なフレームワークを導入し,異常の検出と解釈を両立させる。
論文 参考訳(メタデータ) (2024-11-04T10:28:41Z) - Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
判例検索は、ある事実記述の参照として類似した事例を提供することを目的としている。
既存の作業は主に、長いクエリを使ったケース・ツー・ケースの検索に重点を置いている。
データスケールは、既存のデータハングリーニューラルネットワークのトレーニング要件を満たすには不十分である。
論文 参考訳(メタデータ) (2024-10-09T06:26:39Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Can Foundational Large Language Models Assist with Conducting Pharmaceuticals Manufacturing Investigations? [0.0]
我々は、特定のユースケース、医薬品製造調査に焦点をあてる。
本稿では, 製造事故や逸脱の歴史的記録を活用することで, 新規事例に対処し, 閉鎖する上で有益であることが示唆された。
そこで本研究では, ベクトル埋め込みによる差分記述のセマンティック検索により, 類似した記録を同定できることを示す。
論文 参考訳(メタデータ) (2024-04-24T00:56:22Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
現在の大規模言語モデル(LLM)は時系列解析に革命をもたらす可能性があると我々は主張する。
このような進歩は、時系列のモダリティスイッチングや質問応答など、幅広い可能性を解き放つ可能性がある。
論文 参考訳(メタデータ) (2024-02-05T04:17:49Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - AART: AI-Assisted Red-Teaming with Diverse Data Generation for New
LLM-powered Applications [5.465142671132731]
大規模言語モデル(LLM)のアドバイザリテストは、安全で責任のあるデプロイメントに不可欠である。
本稿では,新しい下流アプリケーション上でのLCM生成の安全性をテストするために,逆評価データセットの自動生成のための新しいアプローチを提案する。
AI支援のレッドチーム(AART)と呼ばれています。
論文 参考訳(メタデータ) (2023-11-14T23:28:23Z) - A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response [0.0]
目標は、デジタル法医学とインシデント対応において、AIとMLのテクニックがどのように使われているか、詳しく調べることである。
この取り組みは、AI駆動の方法論がこれらの重要なデジタル法医学の実践を形作っている複雑な方法を明らかにするために、表面のずっと下を掘り下げる。
最終的に、この論文は、デジタル法医学におけるAIとMLの統合の重要性を強調し、現代のサイバー脅威に取り組む上での、彼らのメリット、欠点、より広範な意味についての洞察を提供する。
論文 参考訳(メタデータ) (2023-09-13T16:23:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。