論文の概要: BMI Prediction from Handwritten English Characters Using a Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2409.02584v1
- Date: Wed, 4 Sep 2024 10:06:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:10:42.911415
- Title: BMI Prediction from Handwritten English Characters Using a Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた手書き英語文字からのBMI予測
- Authors: N. T. Diba, N. Akter, S. A. H. Chowdhury, J. E. Giti,
- Abstract要約: これまでの研究では、筆跡解析のためのディープラーニング技術とBMI予測との間に明確な関連性は確立されなかった。
本稿では、畳み込みニューラルネットワーク(CNN)を開発し、手書き文字からBMIを推定するディープラーニングアプローチを用いて、この研究ギャップに対処する。
BMI予測タスクのために、小文字の英語スクリプトの48人のサンプルを含むデータセットを正常にキャプチャする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A person's Body Mass Index, or BMI, is the most widely used parameter for assessing their health. BMI is a crucial predictor of potential diseases that may arise at higher body fat levels because it is correlated with body fat. Conversely, a community's or an individual's nutritional status can be determined using the BMI. Although deep learning models are used in several studies to estimate BMI from face photos and other data, no previous research established a clear connection between deep learning techniques for handwriting analysis and BMI prediction. This article addresses this research gap with a deep learning approach to estimating BMI from handwritten characters by developing a convolutional neural network (CNN). A dataset containing samples from 48 people in lowercase English scripts is successfully captured for the BMI prediction task. The proposed CNN-based approach reports a commendable accuracy of 99.92%. Performance comparison with other popular CNN architectures reveals that AlexNet and InceptionV3 achieve the second and third-best performance, with the accuracy of 99.69% and 99.53%, respectively.
- Abstract(参考訳): 人の身体質量指数(BMI)は、健康を評価するために最も広く用いられる指標である。
BMIは、身体脂肪と相関しているため、高い体脂肪レベルで起こる可能性のある潜在的な疾患の予測因子である。
逆に、BMIを用いて、コミュニティまたは個人の栄養状態を決定することができる。
深層学習モデルは、顔写真やその他のデータからBMIを推定するためにいくつかの研究で用いられているが、以前の研究では、筆跡解析のための深層学習技術とBMI予測との明確な関係が確立されていない。
本稿では、畳み込みニューラルネットワーク(CNN)を開発し、手書き文字からBMIを推定するディープラーニングアプローチを用いて、この研究ギャップに対処する。
BMI予測タスクのために、小文字の英語スクリプトの48人のサンプルを含むデータセットを正常にキャプチャする。
提案されたCNNベースのアプローチでは、補正可能な精度は99.92%である。
他の一般的なCNNアーキテクチャと比較すると、AlexNetとInceptionV3がそれぞれ99.69%と99.53%の精度で2番目に高いパフォーマンスを達成したことが分かる。
関連論文リスト
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - PatchBMI-Net: Lightweight Facial Patch-based Ensemble for BMI Prediction [3.9440964696313485]
健康度モニタリングのための自己診断型顔画像に基づくBMI予測手法を提案する。
これらの手法は、主に畳み込みニューラルネットワーク(CNN)ベースの回帰ベースライン(VGG19、ResNet50、Efficient-NetB0)を使用している。
本稿では,BMI予測のための軽量な顔パッチベースのアンサンブル(PatchBMI-Net)を開発し,スマートフォンによる展開と重量モニタリングを容易にすることを目的とする。
論文 参考訳(メタデータ) (2023-11-29T21:39:24Z) - Binarized 3D Whole-body Human Mesh Recovery [104.13364878565737]
本研究では, 人体, 顔, 手の3次元パラメータを効率的に推定するために, 両立二重残差ネットワーク (BiDRN) を提案する。
BiDRNは、22.1%のパラメータと14.8%の操作しか使用せず、完全精度のHand4Wholeで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-11-24T07:51:50Z) - Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation [55.92852268168816]
BLEUやchrFのようなN-gramマッチングに基づく評価指標は、自然言語生成(NLG)タスクで広く利用されている。
近年の研究では、これらのマッチングベースの指標と人間の評価との間には弱い相関関係が示されている。
本稿では,これらの指標と人的評価の整合性を高めるために,テキストマルチプル参照を利用することを提案する。
論文 参考訳(メタデータ) (2023-08-06T14:49:26Z) - Body Fat Estimation from Surface Meshes using Graph Neural Networks [48.85291874087541]
三角体表面メッシュを用いて,グラフニューラルネットワークを用いて,VATおよびASATボリュームを正確に予測できることを示す。
本手法は,この領域の最先端畳み込みニューラルネットワークと比較して,トレーニング時間と必要なリソースを削減しつつ高い性能を実現する。
論文 参考訳(メタデータ) (2023-07-13T10:21:34Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
ホワイトマタートラクトデータを用いた神経心理学的スコア予測のためのディープラーニングに基づくフレームワークを提案する。
各点の微細構造測定を行う点雲として, arcuate fasciculus (AF) を表現した。
Paired-Siamese Lossでは,連続した神経心理学的スコアの違いに関する情報を利用した予測性能を改善した。
論文 参考訳(メタデータ) (2022-07-06T02:03:28Z) - Body Composition Estimation Based on Multimodal Multi-task Deep Neural
Network [0.0]
体組成は主に筋肉、脂肪、骨、水から構成される。
マルチモーダル多タスクディープニューラルネットワークを導入し,体脂肪率と骨格筋質量を推定した。
論文 参考訳(メタデータ) (2022-05-23T04:31:06Z) - Estimation of BMI from Facial Images using Semantic Segmentation based
Region-Aware Pooling [3.889462292853575]
Body-Mass-Index (BMI)は、健康や社会経済的状況などの生活に関する重要な情報を伝達する。
近年の研究では、手作業による幾何学的顔の特徴やBMI予測のための顔レベルの深い畳み込みニューラルネットワークの特徴が採用されている。
異なる顔領域からプールされた深い特徴を利用することを提案する。
論文 参考訳(メタデータ) (2021-04-10T10:53:21Z) - AI-based BMI Inference from Facial Images: An Application to Weight
Monitoring [3.4601380631551146]
顔画像からのBMI推論のための5種類のCNNアーキテクチャの性能評価と比較を行った。
実験結果から,ResNet50を用いて得られた平均絶対誤差(MAE)が1.04ドルである顔画像からのBMI推論における深層学習の有効性が示唆された。
論文 参考訳(メタデータ) (2020-10-15T00:00:40Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
3次元関節位置を直接回帰するのではなく,骨方向予測と骨長予測に分解する。
私たちのモチベーションは、人間の骨格の骨の長さが時間とともに一定であることにあります。
我々の完全なモデルは、Human3.6MとMPI-INF-3DHPデータセットにおいて、以前の最高の結果よりも優れています。
論文 参考訳(メタデータ) (2020-02-24T15:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。