SurgTrack: CAD-Free 3D Tracking of Real-world Surgical Instruments
- URL: http://arxiv.org/abs/2409.02598v1
- Date: Wed, 4 Sep 2024 10:29:59 GMT
- Title: SurgTrack: CAD-Free 3D Tracking of Real-world Surgical Instruments
- Authors: Wenwu Guo, Jinlin Wu, Zhen Chen, Qingxiang Zhao, Miao Xu, Zhen Lei, Hongbin Liu,
- Abstract summary: Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages.
In particular, a critical element of the vision-based navigation system is tracking surgical instruments.
We propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications.
- Score: 21.536823332387993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based surgical navigation has received increasing attention due to its non-invasive, cost-effective, and flexible advantages. In particular, a critical element of the vision-based navigation system is tracking surgical instruments. Compared with 2D instrument tracking methods, 3D instrument tracking has broader value in clinical practice, but is also more challenging due to weak texture, occlusion, and lack of Computer-Aided Design (CAD) models for 3D registration. To solve these challenges, we propose the SurgTrack, a two-stage 3D instrument tracking method for CAD-free and robust real-world applications. In the first registration stage, we incorporate an Instrument Signed Distance Field (SDF) modeling the 3D representation of instruments, achieving CAD-freed 3D registration. Due to this, we can obtain the location and orientation of instruments in the 3D space by matching the video stream with the registered SDF model. In the second tracking stage, we devise a posture graph optimization module, leveraging the historical tracking results of the posture memory pool to optimize the tracking results and improve the occlusion robustness. Furthermore, we collect the Instrument3D dataset to comprehensively evaluate the 3D tracking of surgical instruments. The extensive experiments validate the superiority and scalability of our SurgTrack, by outperforming the state-of-the-arts with a remarkable improvement. The code and dataset are available at https://github.com/wenwucode/SurgTrack.
Related papers
- DELTA: Dense Efficient Long-range 3D Tracking for any video [82.26753323263009]
We introduce DELTA, a novel method that efficiently tracks every pixel in 3D space, enabling accurate motion estimation across entire videos.
Our approach leverages a joint global-local attention mechanism for reduced-resolution tracking, followed by a transformer-based upsampler to achieve high-resolution predictions.
Our method provides a robust solution for applications requiring fine-grained, long-term motion tracking in 3D space.
arXiv Detail & Related papers (2024-10-31T17:59:01Z) - SLAM assisted 3D tracking system for laparoscopic surgery [22.36252790404779]
This work proposes a real-time monocular 3D tracking algorithm for post-registration tasks.
Experiments from in-vivo and ex-vivo tests demonstrate that the proposed 3D tracking system provides robust 3D tracking.
arXiv Detail & Related papers (2024-09-18T04:00:54Z) - WARM-3D: A Weakly-Supervised Sim2Real Domain Adaptation Framework for Roadside Monocular 3D Object Detection [23.07748567871443]
Existing roadside perception systems are limited by the absence of publicly available, large-scale, high-quality 3D datasets.
We introduce the TUMTraf Synthetic dataset, offering a diverse and substantial collection of high-quality 3D data.
We also present WARM-3D, a framework to aid the Sim2Real domain transfer for roadside monocular 3D detection.
arXiv Detail & Related papers (2024-07-30T13:32:34Z) - TAPVid-3D: A Benchmark for Tracking Any Point in 3D [63.060421798990845]
We introduce a new benchmark, TAPVid-3D, for evaluating the task of Tracking Any Point in 3D.
This benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video.
arXiv Detail & Related papers (2024-07-08T13:28:47Z) - Plug-in for visualizing 3D tool tracking from videos of Minimally
Invasive Surgeries [0.6629765271909505]
This paper tackles instrument tracking and 3D visualization challenges in minimally invasive surgery (MIS)
Conventional and robot-assisted MIS encounter issues with limited 2D camera projections and minimal hardware integration.
The proposed method involves 2D tracking based on segmentation maps, facilitating creation of labeled dataset without extensive ground-truth knowledge.
arXiv Detail & Related papers (2024-01-12T11:04:39Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - 3D Visual Tracking Framework with Deep Learning for Asteroid Exploration [22.808962211830675]
In this paper, we focus on the studied accurate and real-time method for 3D tracking.
A new large-scale 3D asteroid tracking dataset is presented, including binocular video sequences, depth maps, and point clouds of diverse asteroids.
We propose a deep-learning based 3D tracking framework, named as Track3D, which involves 2D monocular tracker and a novel light-weight amodal axis-aligned bounding-box network, A3BoxNet.
arXiv Detail & Related papers (2021-11-21T04:14:45Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single
Object Tracking [12.644452175343059]
A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates.
Instead of relying on 3D proposals, we produce 2D region proposals which are then extruded into 3D viewing frustums.
We perform an online accuracy validation on the 3D frustum to generate refined point cloud searching space.
arXiv Detail & Related papers (2020-10-22T08:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.