論文の概要: Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
- arxiv url: http://arxiv.org/abs/2409.02634v2
- Date: Thu, 5 Sep 2024 09:11:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 12:05:46.077571
- Title: Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
- Title(参考訳): Loopy: 長期動作依存によるオーディオ駆動型ポートレートアバターのモデリング
- Authors: Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, Yanbo Zheng,
- Abstract要約: 本稿では,Loopy という,エンドツーエンドの音声のみの条件付きビデオ拡散モデルを提案する。
具体的には,ループ内時間モジュールとオーディオ・トゥ・ラテントモジュールを設計し,長期動作情報を活用する。
- 参考スコア(独自算出の注目度): 15.841490425454344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
- Abstract(参考訳): 近年,拡散型映像生成技術の導入により,映像の自然さと肖像画の細部合成の両面で大きなブレークスルーを遂げている。
人間の動きを駆動する際の音声信号の制御が限られているため、既存の手法では運動を安定させるために補助的な空間信号を加えることが多く、運動の自然性と自由を損なう可能性がある。
本稿では,Loopyという,エンドツーエンドのオーディオ専用条件付きビデオ拡散モデルを提案する。
具体的には,データから長期動作情報を活用し,自然な動きパターンを学習し,音声と画像の移動相関を改善するために,クリップ内時間モジュールとオーディオ-音声間の時間モジュールを設計した。
この方法では、既存の手法で使われている手動の空間的動きテンプレートが、推論中の動きを制限する必要がなくなる。
大規模な実験によると、Loopyは近年のオーディオ駆動のポートレート拡散モデルより優れており、様々なシナリオでより生き生きとした高品質な結果をもたらす。
関連論文リスト
- Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
『無限運動』は、長文を長文から拡張運動生成に活用する新しいアプローチである。
我々のモデルの主な革新は、任意の長さのテキストを入力として受け入れることである。
テキストのタイムスタンプ設計を取り入れ、生成されたシーケンス内のローカルセグメントの正確な編集を可能にする。
論文 参考訳(メタデータ) (2024-07-11T12:33:56Z) - Controllable Longer Image Animation with Diffusion Models [12.565739255499594]
動画拡散モデルを用いた動き先行画像を用いたオープンドメイン制御可能な画像アニメーション手法を提案する。
本手法は動画から運動場情報を抽出することにより移動領域の運動方向と速度を正確に制御する。
本稿では,画像アニメーションタスクに特化して最適化されたノイズ再スケジュールに基づく,効率的な長周期ビデオ生成手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:08:00Z) - Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model [17.98911328064481]
共同音声ジェスチャーは、人間と機械の相互作用において優れた視覚効果を得ることができる。
共同音声ジェスチャビデオを生成するための新しい動き分離フレームワークを提案する。
提案手法は,動作評価と映像評価の両方において,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-02T11:40:34Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMixはノイズと無注釈の両方のモーションシーケンスを利用する弱い教師付き拡散モデルである。
我々のフレームワークは、テキスト・トゥ・モーション、アクション・トゥ・モーション、音楽・トゥ・ダンスのタスクにおける最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2024-01-20T04:58:06Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
そこで本研究では,テキスト記述から高品質な人間の動作系列を生成する学習手法を提案する。
既存の技術は、任意の長さの動き列を生成する際に、動きの多様性と滑らかな遷移に苦しむ。
動作空間をコンパクトで表現力のあるパラメータ化位相空間に変換するネットワークエンコーダを開発する。
論文 参考訳(メタデータ) (2023-12-07T04:39:22Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) はビデオ拡散モデルに時間的注意層を適応させる新しいワンショットチューニング手法である。
本研究では, 連続するフレーム間の残留ベクトルを運動基準として用いた新しい運動蒸留法を提案する。
実世界のさまざまな動きや状況にまたがる最先端のビデオ生成モデルに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-01T06:50:11Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusionは、高品質な条件付き人間のモーション合成のための新しいノイズ拡散ベースのフレームワークである。
本研究では,運動拡散フレームワーク内での運動可視性に対して,よく知られたキネマティック損失を導入する方法を提案する。
文献の確立されたベンチマークにおけるMoFusionの有効性を,技術の現状と比較した。
論文 参考訳(メタデータ) (2022-12-08T18:59:48Z) - Continuous-Time Video Generation via Learning Motion Dynamics with
Neural ODE [26.13198266911874]
動きと外観の異なる分布を学習する新しい映像生成手法を提案する。
本稿では,第1段階が任意のフレームレートで雑音ベクトルをキーポイント列に変換し,第2段階が与えられたキーポイントシーケンスと外観雑音ベクトルに基づいて映像を合成する2段階の手法を用いる。
論文 参考訳(メタデータ) (2021-12-21T03:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。