論文の概要: Independence Constrained Disentangled Representation Learning from Epistemological Perspective
- arxiv url: http://arxiv.org/abs/2409.02672v1
- Date: Wed, 4 Sep 2024 13:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 18:26:46.829820
- Title: Independence Constrained Disentangled Representation Learning from Epistemological Perspective
- Title(参考訳): 認識論的視点から見た独立性制約付きアンタングル表現学習
- Authors: Ruoyu Wang, Lina Yao,
- Abstract要約: Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 13.51102815877287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process. Nevertheless, there is no consensus regarding a universally accepted definition for the objective of disentangled representation learning. In particular, there is a considerable amount of discourse regarding whether should the latent variables be mutually independent or not. In this paper, we first investigate these arguments on the interrelationships between latent variables by establishing a conceptual bridge between Epistemology and Disentangled Representation Learning. Then, inspired by these interdisciplinary concepts, we introduce a two-level latent space framework to provide a general solution to the prior arguments on this issue. Finally, we propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint within the Generative Adversarial Network (GAN) framework. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches in both quantitative and qualitative evaluations. The method exhibits strong performance across multiple commonly used metrics and demonstrates a great capability in disentangling various semantic factors, leading to an improved quality of controllable generation, which consequently benefits the explainability of the algorithm.
- Abstract(参考訳): Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
それでも、非絡み合い表現学習の目的に対する普遍的に受け入れられた定義については合意が得られていない。
特に、潜在変数が相互独立であるかどうかに関して、かなりの量の議論がある。
本稿では,認識論と不整合表現学習の概念的橋渡しを確立することにより,潜伏変数間の相互関係に関するこれらの議論を考察する。
そして、これらの学際的概念に触発されて、この問題に関する以前の議論に対する一般的な解決策を提供するために、2段階の潜在空間フレームワークを導入する。
最後に,GAN(Generative Adversarial Network)フレームワークにおける相互情報制約と独立性制約の統合を利用して,非絡み合い表現学習のための新しい手法を提案する。
実験結果から,提案手法は定量評価と定性評価の両方において,ベースラインアプローチを一貫して上回ることを示した。
提案手法は,複数の一般的なメトリクスに対して高い性能を示し,様々な意味的要因を解消する優れた能力を示し,制御可能な生成の質が向上し,アルゴリズムの説明可能性の向上に寄与する。
関連論文リスト
- Self-Distilled Disentangled Learning for Counterfactual Prediction [49.84163147971955]
我々は、SD2$として知られる自己蒸留遠絡フレームワークを提案する。
情報理論を基礎として、複雑な相互情報推定器の設計を伴わずに、理論上独立に不整合表現を鳴らす。
人工と実世界の両方のデータセットを用いて実験を行い,本手法の有効性を確認した。
論文 参考訳(メタデータ) (2024-06-09T16:58:19Z) - Constrained Multiview Representation for Self-supervised Contrastive
Learning [4.817827522417457]
本稿では、異なる視点の重要度を測定するために、表現距離に基づく相互情報(MI)に基づく新しいアプローチを提案する。
周波数領域から抽出した多視点表現を利用して、相互情報に基づいてそれらの意義を再評価する。
論文 参考訳(メタデータ) (2024-02-05T19:09:33Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
DMUE(DMUE)という,アノテーションのあいまいさを2つの視点から解決するソリューションを提案する。
前者に対しては,ラベル空間における潜伏分布をよりよく記述するために,補助的マルチブランチ学習フレームワークを導入する。
後者の場合、インスタンス間の意味的特徴のペアワイズ関係を完全に活用して、インスタンス空間のあいまいさの程度を推定する。
論文 参考訳(メタデータ) (2021-04-01T03:21:57Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
本稿では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習するディープラーニングフレームワークを提案する。
我々のフレームワークは、現在の最先端手法よりもはるかに正確な不確実性推定を実証している。
論文 参考訳(メタデータ) (2020-07-25T05:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。