Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon
- URL: http://arxiv.org/abs/2409.02681v6
- Date: Fri, 1 Nov 2024 23:24:37 GMT
- Title: Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon
- Authors: Ramon Tavares, Ricardo Olinda,
- Abstract summary: This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil.
The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA\_M-T satellite in the Amazon, Brazil. The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots. Data analysis revealed a consistent seasonality over time, with annual maximum and minimum values tending to repeat at the same periods each year. The primary objective is to verify whether the forecasts capture this inherent seasonality through machine learning techniques. The methodology involved careful data preparation, model configuration, and training using cross-validation with two seeds, ensuring that the data generalizes well to both the test and validation sets for both seeds. The results indicate that the combined LSTM and GRU model delivers excellent forecasting performance, demonstrating its effectiveness in capturing complex temporal patterns and modeling the observed time series. This research significantly contributes to the application of deep learning techniques in environmental monitoring, specifically in forecasting active fire spots. The proposed approach highlights the potential for adaptation to other time series forecasting challenges, opening new opportunities for research and development in machine learning and prediction of natural phenomena. Keywords: Time Series Forecasting; Recurrent Neural Networks; Deep Learning.
Related papers
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
We develop two Deep Learning models aimed at filling data gaps in time series obtained from monitored apartments in Bolzano, Italy.
Our approach manages to capture the fluctuating nature of the data and shows good accuracy in reconstructing the target time series.
arXiv Detail & Related papers (2022-04-21T09:40:30Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z) - Dynamic Time Warping as a New Evaluation for Dst Forecast with Machine
Learning [0.0]
We train a neural network to make a forecast of the disturbance storm time index at origin time $t$ with a forecasting horizon of 1 up to 6 hours.
Inspection of the model's results with the correlation coefficient and RMSE indicated a performance comparable to the latest publications.
A new method is proposed to measure whether two time series are shifted in time with respect to each other.
arXiv Detail & Related papers (2020-06-08T15:14:13Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.