論文の概要: CortexCompile: Harnessing Cortical-Inspired Architectures for Enhanced Multi-Agent NLP Code Synthesis
- arxiv url: http://arxiv.org/abs/2409.02938v1
- Date: Fri, 23 Aug 2024 18:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 14:53:30.136111
- Title: CortexCompile: Harnessing Cortical-Inspired Architectures for Enhanced Multi-Agent NLP Code Synthesis
- Title(参考訳): CortexCompile: 強化マルチエージェントNLPコード合成のための高調波皮質刺激型アーキテクチャ
- Authors: Gautham Ramachandran, Rick Yang,
- Abstract要約: 神経科学の原則を自然言語処理に統合することは、自動コード生成に革命をもたらす可能性がある。
本稿では,ヒト脳皮質領域の特殊機能に触発された新しいモジュラーシステムであるCortexCompileについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current approaches to automated code generation often rely on monolithic models that lack real-time adaptability and scalability. This limitation is particularly evident in complex programming tasks that require dynamic adjustment and efficiency. The integration of neuroscience principles into Natural Language Processing (NLP) has the potential to revolutionize automated code generation. This paper presents CortexCompile, a novel modular system inspired by the specialized functions of the human brain's cortical regions. By emulating the distinct roles of the Prefrontal Cortex, Parietal Cortex, Temporal Lobe, and Motor Cortex, CortexCompile achieves significant advancements in scalability, efficiency, and adaptability compared to traditional monolithic models like GPT-4o. The system's architecture features a Task Orchestration Agent that manages dynamic task delegation and parallel processing, facilitating the generation of highly accurate and optimized code across increasingly complex programming tasks. Experimental evaluations demonstrate that CortexCompile consistently outperforms GPT-4o in development time, accuracy, and user satisfaction, particularly in tasks involving real-time strategy games and first-person shooters. These findings underscore the viability of neuroscience-inspired architectures in addressing the limitations of current NLP models, paving the way for more efficient and human-like AI systems.
- Abstract(参考訳): コードの自動生成に対する現在のアプローチは、リアルタイムの適応性とスケーラビリティに欠けるモノリシックなモデルに依存していることが多い。
この制限は、動的調整と効率性を必要とする複雑なプログラミングタスクにおいて特に顕著である。
神経科学の原理を自然言語処理(NLP)に統合することは、自動コード生成に革命をもたらす可能性がある。
本稿では,ヒト脳皮質領域の特殊機能に触発された新しいモジュラーシステムであるCortexCompileについて述べる。
前頭前皮質、Parietal Cortex、Temporal Lobe、Motor Cortexの異なる役割をエミュレートすることで、CortexCompileはGPT-4oのような従来のモノリシックモデルと比較してスケーラビリティ、効率、適応性に大きな進歩を遂げている。
システムのアーキテクチャは、動的タスクデリゲートと並列処理を管理するタスクオーケストレーションエージェントを備えており、ますます複雑なプログラミングタスクにまたがる高度に正確で最適化されたコードの生成を容易にする。
CortexCompileは、特にリアルタイム戦略ゲームやファーストパーソンシューティングのタスクにおいて、開発時間、精度、ユーザ満足度において一貫してGPT-4oを上回っている。
これらの発見は、現在のNLPモデルの限界に対処し、より効率的で人間らしいAIシステムを実現する上で、神経科学にインスパイアされたアーキテクチャの生存可能性を強調している。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks(SNN)は、小さくて低消費電力なハードウェアフットプリントによるエネルギー効率の向上を提供する。
本稿では、JAXで設計された新しい軽量SNNシミュレーションおよび最適化ライブラリSpyxを紹介する。
論文 参考訳(メタデータ) (2024-02-29T09:46:44Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
本稿では,Deep Q-Networks (DQN) を用いた強化学習を分類タスクに活用するフレームワークを提案する。
本稿では,OVR(One-Versus-The-Rest)方式で,マルチクラス運動画像(MI)分類のための前処理手法を提案する。
DQNと1D-CNN-LSTMアーキテクチャの統合は意思決定プロセスをリアルタイムで最適化する。
論文 参考訳(メタデータ) (2024-02-09T02:03:13Z) - Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks [14.835081385422653]
入力凸リプシッツリカレントニューラルネットワークと呼ばれる新しいネットワークアーキテクチャを開発した。
このモデルは、高速で堅牢な最適化ベースのタスクのために明示的に設計されている。
我々は、様々な実用工学的応用でこのモデルを成功裏に実装した。
論文 参考訳(メタデータ) (2024-01-15T06:26:53Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Evolving Connectivity for Recurrent Spiking Neural Networks [8.80300633999542]
リカレントニューラルネットワーク(RSNN)は、人工知能の進歩に大きな可能性を秘めている。
本稿では、RSNNをトレーニングするための推論のみの手法である、進化的接続性(EC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-28T07:08:25Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。