論文の概要: Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations
- arxiv url: http://arxiv.org/abs/2409.02965v1
- Date: Wed, 4 Sep 2024 02:17:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 01:16:35.450377
- Title: Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations
- Title(参考訳): 彼らが何を言ったか、何をしたか信頼しているか? 個人化された説明を提供するマルチモーダル・ユーザー・エンベッド
- Authors: Zhicheng Ren, Zhiping Xiao, Yizhou Sun,
- Abstract要約: ソーシャルネットワークのためのコントリビューション対応マルチモーダルユーザ埋め込み(CAMUE)を提案する。
提案手法は,信頼できない情報の影響を自動的に軽減し,パーソナライズ可能な予測を提供する。
私たちの仕事は、より説明しやすく、信頼性があり、効果的なソーシャルメディアユーザー埋め込みの道を開く。
- 参考スコア(独自算出の注目度): 35.77028281332307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of social media, the importance of analyzing social network user data has also been put on the agenda. User representation learning in social media is a critical area of research, based on which we can conduct personalized content delivery, or detect malicious actors. Being more complicated than many other types of data, social network user data has inherent multimodal nature. Various multimodal approaches have been proposed to harness both text (i.e. post content) and relation (i.e. inter-user interaction) information to learn user embeddings of higher quality. The advent of Graph Neural Network models enables more end-to-end integration of user text embeddings and user interaction graphs in social networks. However, most of those approaches do not adequately elucidate which aspects of the data - text or graph structure information - are more helpful for predicting each specific user under a particular task, putting some burden on personalized downstream analysis and untrustworthy information filtering. We propose a simple yet effective framework called Contribution-Aware Multimodal User Embedding (CAMUE) for social networks. We have demonstrated with empirical evidence, that our approach can provide personalized explainable predictions, automatically mitigating the impact of unreliable information. We also conducted case studies to show how reasonable our results are. We observe that for most users, graph structure information is more trustworthy than text information, but there are some reasonable cases where text helps more. Our work paves the way for more explainable, reliable, and effective social media user embedding which allows for better personalized content delivery.
- Abstract(参考訳): ソーシャルメディアの急速な発展に伴い、ソーシャルネットワークのユーザーデータ分析の重要性も重要視されている。
ソーシャルメディアにおけるユーザ表現学習は、パーソナライズされたコンテンツ配信を行うか、悪意のあるアクターを検出することができる、重要な研究領域である。
他の多くのデータよりも複雑であるため、ソーシャルネットワークのユーザーデータは本質的にマルチモーダルな性質を持っている。
テキスト(ポストコンテンツ)とリレーショナル(ユーザ間インタラクション)の両方を活用して、高品質なユーザ埋め込みを学習するために、様々なマルチモーダルアプローチが提案されている。
グラフニューラルネットワークモデルの出現により、ソーシャルネットワークにおけるユーザテキストの埋め込みとユーザインタラクショングラフのエンドツーエンド統合がより強化される。
しかし、これらのアプローチのほとんどは、特定のタスク下で個々のユーザを予測する上で、データ(テキストやグラフ構造情報)のどの側面が役に立つかを適切に解明していない。
本稿では,ソーシャルネットワークのためのコントリビューション対応マルチモーダルユーザ埋め込み(CAMUE)という,シンプルで効果的なフレームワークを提案する。
我々は,信頼できない情報の影響を自動的に軽減し,パーソナライズされた説明可能な予測を提供することを実証的証拠で実証した。
ケーススタディも実施し、その結果がどの程度妥当かを示した。
ほとんどのユーザにとって、グラフ構造情報はテキスト情報よりも信頼できるが、テキストがより役に立つような合理的なケースもある。
私たちの仕事は、より説明しやすく、信頼性があり、効果的なソーシャルメディアユーザー埋め込みの道を開くことで、パーソナライズされたコンテンツ配信を改善できます。
関連論文リスト
- SoMeR: Multi-View User Representation Learning for Social Media [1.7949335303516192]
本稿では,ソーシャルメディアのユーザ表現学習フレームワークであるSoMeRを提案する。
SoMeRは、ユーザ投稿ストリームをタイムスタンプ付きテキスト機能のシーケンスとしてエンコードし、トランスフォーマーを使用してプロファイルデータと共にそれを埋め込み、リンク予測とコントラスト学習の目標を共同でトレーニングする。
1)類似コンテンツを同時に投稿するユーザを検出することによって、協調的な影響操作に関わる不正確なアカウントを同定し、2)異なる信念を持つユーザがより遠くへ移動する様子を定量化して、主要なイベント後のオンライン議論における偏光の増大を測定する。
論文 参考訳(メタデータ) (2024-05-02T22:26:55Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - Learning User Embeddings from Temporal Social Media Data: A Survey [15.324014759254915]
我々は,簡潔な潜在ユーザ表現(a.k.a.)を学習する代表的作業について調査する。
ユーザー埋め込み)は、ソーシャルメディアユーザーの主な特徴を捉えることができる。
学習されたユーザー埋め込みは、その後、パーソナリティモデリング、自殺リスクアセスメント、購買判断予測など、さまざまな下流のユーザー分析タスクをサポートするために使用できます。
論文 参考訳(メタデータ) (2021-05-17T16:22:43Z) - Analysis of Social Media Data using Multimodal Deep Learning for
Disaster Response [6.8889797054846795]
本稿では,ソーシャルメディアデータのテキストと画像のモダリティを併用して,最先端のディープラーニング技術を用いて共同表現を学習することを提案する。
実世界の災害データセットの実験により、提案されたマルチモーダルアーキテクチャは、単一のモダリティを用いてトレーニングされたモデルよりも優れたパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-04-14T19:36:11Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。